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Abstract

While large language models (LLMs) have shown signi�cant ad-

vancements in code generation, their susceptibility to producing

incorrect code poses a signi�cant challenge to the adoption of LLM-

generated programs. This issue largely stems from the reliance

on natural language descriptions as informal oracles in code gen-

eration. Current strategies to mitigate this involve selecting the

best program from multiple LLM-generated alternatives, judged

by criteria like the consistency of their execution results on an

LLM-generated test suite. However, this approach has crucial limi-

tations: (1) LLMs often generate redundant tests or tests that cannot

distinguish between correct and incorrect solutions, (2) the used

consistency criteria, such as the majority vote, fail to foster de-

veloper trust due to the absence of transparent rationale behind

the made choices. In this work, we propose a new perspective on

increasing the quality of LLM-generated code via program selection

using the LLM as a test oracle. Our method is based on our experi-

mentally con�rmed observation that LLMs serve more e�ectively as

oracles when tasked with selecting the correct output frommultiple

choices. Leveraging this insight, we �rst generate distinguishing in-

puts that capture semantic discrepancies of programs sampled from

an LLM, and record outputs produced by the programs on these

inputs. An LLM then selects the most likely to be correct output

from these, guided by the natural language problem description.

We implemented this idea in a tool LLMCodeChoice and evaluated

its accuracy in generating and selecting standalone programs. Our

experiments demonstrated its e�ectiveness in improving pass@1

by 3.6-7% on HumanEval and MBPP benchmarks compared to the

state-of-art codeT. Most interestingly, the selected input-output

speci�cations helped us to uncover incompleteness and ambigui-

ties in task descriptions and also identify incorrect ground-truth

implementations in the benchmarks.
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1 Introduction

Program synthesis [4, 15–17] aims to automatically generate pro-

grams that satisfy developers’ intentions, which reduces the manual

burden and lowers the barrier to programming. Trained on massive

amounts of data, LLMs [11, 24, 28] have propelled the generation of

programs from natural language descriptions to an unprecedented

level. LLM-based AI programming assistants like Github Copilot,

and Amazon CodeWhisperer [1, 31, 42] automatically generate mul-

tiple code suggestions based on developers’ natural language query,

whereas developers navigate between these code suggestions until

they �nd one that best aligns with their objectives. Consequently,

the e�ectiveness of AI programming assistants is contingent upon

their ability to promptly propose the most accurate code solutions,

thereby fostering a sense of trust in the LLM-generated code sug-

gestions and enhancing the overall user experience.

A key limitation of the reliance on LLMs and natural language

speci�cation is the generation of imprecise solutions. Recent stud-

ies [14] show that many LLM-generated programs often do not

align with the requirements described in natural language. One

common approach to mitigating this problem is selecting programs

among multiple sampled LLM outputs based on the consistency of

these outputs, e.g. via the majority vote [10, 24]. Techniques follow-

ing this paradigm �rst group LLM-generated programs into clusters

so that the programs in each cluster share the same execution re-

sults on a given test suite. Then, they use the size of a program

cluster as a proxy for the likelihood of being correct. Speci�cally,

AlphaCode [24] trains a separate LLM for natural language based

test-input generation and group programs with the same output

together. codeT [10] prompts an LLM to generate a test suite and

applies a so-called dual-execution agreement to assign correctness

scores for each program cluster. Although these approaches have

shown promising improvements over the default random selection

strategy in LLMs, there are certain limitations. One of the key limi-

tations is the low quality of the LLM-generated tests. These tests

are often incorrect, contain many duplicates, or cannot reveal the

discrepancies between various generated programs.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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To address the above limitations, we propose a new perspective

on increasing the quality of LLM-generated code via program se-

lection using the LLM as a test oracle [8]. Our method is based on

our experimentally con�rmed observation that LLMs serve more

e�ectively as oracles when tasked with selecting the correct output

from multiple choices, rather than predicting the right outcome for

a given input from scratch. Relying on this observation, we �rst �nd

distinguishing inputs that capture the semantic discrepancies be-

tween LLM-generated programs through di�erential testing instead

of randomly sampling test cases with LLMs. Then, we group pro-

grams that produce the same results on distinguishing inputs into

program clusters. We also record outputs produced by the programs

on these inputs for each cluster. An LLM is then prompted to select

the output that is most likely to be correct, guided by the natural lan-

guage problem description. We also apply chain-of-thought (CoT)

prompting [36] to increase the chance of selecting the right out-

put. The selected outputs, together with the distinguishing inputs,

form a new speci�cation. Finally, the LLM-generated programs that

satisfy this speci�cation are returned to the user.

We conducted experiments on widely-used code generation

benchmarks, HumanEval and MBPP [5], focused on the gener-

ation of standalone programs, i.e. self-contained programs that

invoke only built-in functions and standard libraries [40]. The ex-

periments show that the oracle-guided selection strategy improves

the accuracy of program selection compared to the state-of-the-

art codeT. Speci�cally, the pass@1 increases from 80.8% to 87.7%

on the HumanEval benchmark, and from 75.0% to 78.6% on the

MBPP benchmark. LLMCodeChoice is also 60% more e�cient than

codeT w.r.t. the token cost. In addition, using LLMCodeChoice’s

distinguishing input-output speci�cations, we identi�ed incorrect

ground-truth implementations in the benchmarks and showed that

the speci�cations help uncover incompleteness and ambiguities in

task descriptions, which may improve developers’ con�dence in

using AI programming assistants in the future.

• We propose the idea of oracle-guided program selection for LLM-

generated programs, which �nds distinguishing inputs and lever-

ages the natural language descriptions to select the correct out-

puts of distinguishing inputs to form a high-quality distinguish-

ing test suite as speci�cations.

• In our experiments on HumanEval+ and MBPP+, we show that

our approach, implemented in a tool LLMCodeChoice, enhances

the accuracy of code generation compared with the state-of-the-

art program selection techniques.

• We demonstrate that the inferred distinguishing input-output

speci�cations are useful for detecting incompleteness and ambi-

guities in the problem descriptions.

2 Related Work

Code Generation. Code generation (program synthesis) is the task

of automatically generating programs that satisfy some form of user

speci�cation. In existing works, the speci�cation can take the form

of a logical formula [4] or input-output examples [16, 29]. In recent

years, neural networks have been trained to generate programs

from a natural language description of the desired program [34, 39].

Most recently, a large number of LLMs have been developed, e.g.,

CodeX [11], AlphaCode [24], ChatGPT [3], and GPT-4 [28]. They

have been pretrained onmassive amounts of data and can generalize

to various tasks given an appropriate prompt, without �ne-tuning.

In particular, LLMs go beyond previous techniques by generating

programs from natural language descriptions. In our work, we take

advantage of ChatGPT to generate initial program samples.

Prompting for Code Generation. A widely used prompting tech-

nique for code generation is the few-shot prompting introduced

with GPT-3 [9]. In a few-shot prompt, the actual problem to be

solved is preceded by several example question-answer pairs. These

examples result in improved quality of generated code. Several other

prompting techniques have been inspired by few-shot prompting,

e.g., chain-of-thought [36] and structured chain-of-thought [23]. In

this paper, we study the problem of selecting correct LLM-generated

code, instead of generating code. Our selection technique can be

applied on top of programs generated with various prompting tech-

niques, to enhance user trust in the generated programs.

Program Selection from LLMs. LLMs are non-deterministic [30],

and many generation attempts may result in the generation of

incorrect programs. To tackle this issue, several techniques have

been proposed to select the correct program from multiple samples.

AlphaCode [24] divides programs into clusters based on program

output on a set of LLM-generated test inputs. Programs with the

same outputs are put in the same cluster, and larger clusters are

prioritized for selection. Speculyzer [20] and CodeT [10] perform a

similar clustering, where programs passing the same set of LLM-

generated tests are clustered. Apart from the cluster size, Speculyzer

and CodeT also take into account the number of passed test cases

when doing the selection. In our work, we cluster programs by

di�erential testing. This produces distinguishing inputs that better

expose di�erences between programs than LLM-generated test

cases. Moreover, instead of selecting the largest cluster, we select

the cluster that LLM chooses as an oracle.

Program Di�erentiation. An important part of program selection

is to expose the semantic di�erences between programs. One way to

do so is di�erential testing, which aims to generate concrete inputs

on which two programs exhibit di�erent behavior (distinguishing

inputs). The inputs can be generated via a biased random search un-

der the guidance of some feedback (e.g., program coverage [13]) or

generated by symbolic execution [32]. Besides di�erential testing,

regression veri�cation [6, 7] can also be used to expose the inequiv-

alence between programs. In our work, we use di�erential testing

for program di�erentiation, because the generated distinguishing

inputs enable the LLM to be used more e�ectively as a test oracle.

Test Generation with LLMs. AthenaTest [35] generates unit tests

for Java programs with a transformer. It uses the program-under-

test as the oracle. ChatUniTest [38] prompts ChatGPT to generate

Java unit tests with context information, including method name,

class name, etc. ChatTester [41] queries ChatGPT about the “in-

tention” of the method-under-test, which is then used to prompt

ChatGPT to generate tests. CodaMosa [21] improves coverage of

search-based testing by leveraging an LLM to generate example

test cases for under-covered functions. Fuzz4All [37] automatically

prompts LLMs to generate fuzzing inputs. Libro [19] prompts an

LLM to generate test cases from a bug report for the purpose of

bug reproduction. Contrary to these works we do not use LLMs
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to generate tests. We use the LLM as partial guidance to infer the

intended behavior of test inputs generated via di�erential testing.

Repair of Code from LLMs. Another possible mitigation to the

lack of correctness guarantee is to repair LLM-generated code.

The repair process can be aided with di�erent artifacts, e.g., LLM-

generated feedback on the code [27], error information produced

by code execution [12, 14, 18]. In this paper, we focus on program

selection which complements repair of LLM-generated code.

3 Motivating Example

In this section, we illustrate LLMCodeChoice with task 44 of the

HumanEval benchmark.We compare our techniquewith codeT [24],

the state-of-the-art program selection technique, as well as Alpha-

Code [24]. Both codeT and AlphaCode are based on majority

vote and can improve the accuracy of program selection. How-

ever, they failed to select a correct program for this task, while

LLMCodeChoice made a correct selection.

As shown at the top of Figure 1, the “change_base” task involves

implementing a function that returns the string representation

of the input number G after changing its numerical base to 10B4 ,

where 10B4 is less than 10, and we generated ten program samples

with ChatGPT. We observe that six of the programs are equivalent,

denoted with “Program Cluster 1” in Figure 1. Samples in program

cluster 1 iteratively calculate the digits of G in the speci�ed 10B4 and

then concatenate the digits to get the result string. Meanwhile, the

other four samples take another solution, forming “Program Cluster

2” in Figure 1. This solution is largely the same as that of program

cluster 1, except that it correctly returns the string ‘0’ in case G = 0.

Because the representation of the number 0 would still be 0 for any

base. On the other hand, since program cluster 1 ignores this edge

case, it would return the wrong result of an empty string when

G = 0. This confusion is likely due to the incompleteness of the

natural language speci�cation of the ‘change_base’ task. The task

description in Figure 1 speci�cally mentions that 10B4 is less than

10, but leaves the range of the input G unspeci�ed, which leads to

two di�erent understandings in the LLM-generated programs. The

surprising fact is that the canonical solution of this task provided

by experienced programmers in HumanEval also has this mistake,

which underlines the importance of providing supporting evidence

for LLM-generated programs to developers.

AlphaCode and codeT. AlphaCode and codeT perform ma-

jority vote based on program execution results on a set of LLM-

generated test cases. For this example, we generated 100 test cases

with GPT-4, using the problem description as the prompt. We notice

that the test cases include a distinguishing input G = 0, 10B4 = 2,

which would allow AlphaCode and codeT to divide the programs

into two clusters. There is also a test case G = 10, 10B4 = 16, though

the problem description speci�es that 10B4 should be less than 10.

Both clusters would fail this test due to the unexpected 10B4 value.

AlphaCode executes all the programs with the LLM-generated

test inputs and groups programs that produce the same outputs into

one cluster, and then randomly selects one program from the largest

program cluster as the correct program sample. In the example

of Figure 1, AlphaCode selects a sample from program cluster

1, because this cluster is the larger one. Similar to AlphaCode,

codeT tracks the passing tests for each LLM-generated program

regarding the LLM-generated test suite, and classi�es programs that

pass the same tests into one program cluster. codeT then assigns a

correctness score de�ned as (size of a program cluster) × (number

of passing tests of a program cluster) to each program cluster and

selects programs from the cluster with the highest score. In Figure 1,

cluster 1 passes 98 test cases (failing (0,2) and (10,16)) and has size 6,

so its correctness score is calculated as 98 × 6 = 588. Cluster 2 does

not fail the G = 0 test case and has a score of 99 × 4 = 396. Since

cluster 1 has a higher score, codeT also selects program cluster 1 as

correct. Therefore, both AlphaCode and codeT made the wrong

selection for this example.

Our Approach. Instead of solely relying on LLMs to generate

test cases based on incomplete natural language speci�cation, we

propose to search for a small yet precise distinguishing test suite.

The small size of the test suite makes it a�ordable to be shown

to developers as correctness evidence for selected LLM-generated

programs. We illustrate the construction of the distinguishing test

suite through the example in Figure 1. We set a postcondition for all

program samples from LLM that their outputs must be equivalent

for any given input. Taking the postcondition as a guard and lever-

aging testing techniques, we can easily �nd one counter-example

G = 0, 10B4 = 2 that violates the postcondition as a distinguishing in-

put and thus produces two program clusters. This counter-example

shows that the natural language speci�cation is incomplete for the

test input G = 0, 10B4 = 2. We provide insight into the possible

outputs by executing the two program variants of ‘change_base’

and get two possible speci�cations.

change_base(0,2)=="0" $' change_base(0,2)=="".

Then we leverage LLM to select one correct output from the two

speci�cation options based on the problem description. Experimen-

tally, we show that LLM is more accurate in selecting the output

from several options rather than predicting the output from scratch,

which we believe explains a better success rate of our approach

compared to codeT. Combining the distinguishing input and the

selected output, we curate an input-output speci�cation, which not

only improves program selection accuracy but may also enhance

the trust of developers in LLM-generated code, since input-output

examples are easy to interpret for humans.

4 Methodology

LLMCodeChoice accepts a programming task description in natu-

ral language, which must satisfy the following assumptions:

• the description must contain information on how the outputs of

the program relate to its inputs,

• there must be a method of testing the generated code to �nd

distinguishing inputs and the corresponding outputs,

• it must be possible to represent the input and the output as text

that multiple outputs for distinguishing inputs �t into the LLM’s

context window.

LLMCodeChoice �rst samples a set ( of programs from an

LLM (step ① in Figure 2). Then, it performs di�erential testing

to obtain distinguishing inputs witnessing behavioral di�erences

among samples (step ② in Figure 2). Speci�cally, we say an input 8

is a distinguishing input, if there exists two samples B1, B2 such that
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def change_base(x, base):

    """ change numerical base of input number x to base. return string representation

          after the conversion. base numbers are less than 10."""

assert change_base(10,2) == '1010’

...

assert change_base(10, 16) == ‘A ’ ❌
assert change_base(0,2) == ‘0’

def change_base(x, base):

     digits = []

     while x > 0:

       digits.append(str(x % base))

       x //= base

     return ''.join(digits[::-1])

change_base(0,2)

>>> ''

def change_base(x, base):

if x == 0: return '0'

result = ''

while x > 0:

result = str(x % base) + result

x = x // base

return result

change_base(0,2)

>>> '0'

Sample 1

Sample 10

Detected two program clusters with 

input: {x=0, base=2}

Cluster 1: score = 98 × 6 = 588 ❌
Cluster 2: score = 99 × 4 = 396

Cluster 1: size = 6 ❌
Cluster 2: size = 4

      Please help me select a correct output from a few choices for the 

      below function:

      def change_base(x, base)

            ""“ change the numerical … """

      What should be the value of change_base(0, 2)? ‘’ or ‘0’?

      This function is responsible for changing...

      However, when the original number is 0, no matter what the base is,            

      the function should immediately terminate and return '0'. That’s

      because 0 in decimal is still 0 in any other bases. 

      Therefore, the correct output for `change_base(0, 2)` should be `’0’`

      Cluster 1: change_base(0, 2) == ‘’

      Cluster 2: change_base(0, 2) == ‘0’ ✔     

Problem Description

LLM-Generated Test Cases Differential-Testing Generated Tests

Program Cluster 1 (size = 6)
Program Cluster 2 (size = 4)

CodeT (correctness score)

AlphaCode (majority vote)

LLMCodeChoice (specification selection)

clustering clustering

…

Figure 1: The work�ows and selection results of LLMCodeChoice,AlphaCode, and codeT on task 44 of HumanEval. Selection

results are marked in bold. While AlphaCode and codeT use LLM-generated tests to do program clustering and some form of

majority vote, LLMCodeChoice obtains distinguishing inputs by di�erential testing and prompts LLM to select the correct

outputs for these inputs based on natural language problem description.

B1 (8) ≠ B2 (8), where B1 (8) and B2 (8) represent the respective outputs

of both samples on 8 . The set of distinguishing inputs, which we

write I, partitions the samples into clusters. Two samples fall into

the same cluster if they produce the same output on every input.

With the distinguishing inputs and the program outputs on these

inputs, we try to infer an input-output oracle for the problem. For

every distinguishing input, we query the LLM about the correspond-

ing correct output and then rule out all clusters incorrect on this

input (step ③ in Figure 2). A query takes the form of a multiple

choice question, choices consisting of all di�erent outputs of the

samples that have not been ruled out. In this way, we are able to
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Differential 

Testing
Problem 

Description

Function f does the following: … What should be

the value of f(x)? y1 or y2 or y3?

The value should be y2, because …

Distinguishing

Inputs
Program 

Samples

f1

f2

f3
f2 is correct

test: assert f(x) == y2  

Oracle Inference

Program Selection

Figure 2: Overview of Oracle-Guided Program Selection

gradually zoom in on and �nally select the correct equivalence class

(step ④ in Figure 2).

4.1 Di�erential Testing of Program Samples

We employ di�erential testing to generate distinguishing inputs.

The generated distinguishing inputs would allow us to select the

correct program more accurately, with less computational cost, and

also facilitate the maintenance of the LLM-generated program in

the long run if the program is integrated into a codebase.

The distinguishing input can help increase the accuracy of our

program selection. This is because a distinguishing input clearly

indicates when two programs would have di�erent behavior. To

make a choice between two di�erent programs, it is enough to

get the expected output of a distinguishing input and compare

the actual outputs of both programs with the expected output.

Intuitively, it is often an easier task to �nd out the one expected

output than to compare the full semantics of two programs.

The distinguishing input also makes program selection more

cost-e�ective, as the number of distinguishing inputs is often small.

As shown in our experiment, ten LLM-generated programs on

average represent no more than three kinds of di�erent semantics,

so two distinguishing inputs would be enough to di�erentiate the

programs. Therefore, only a modest number of tokens need to be

used to predict the expected outputs of the inputs using an LLM.

In comparison, codeT requires sampling many test cases from the

LLM and thus incurs high computational cost.

An additional bene�t of distinguishing inputs is that they facili-

tate the understanding and maintenance of the generated program.

The inputs, together with their corresponding outputs, e�ectively

form a test suite that speci�es the desired program behavior. In

case the generated program is integrated into a codebase, this test

suite can be integrated for quality assurance as well. We will further

illustrate the usefulness of the distinguishing inputs with concrete

examples in a case study (Section 6.5), where these inputs have

helped identify ambiguous descriptions or even wrong ground

truths in the evaluation datasets.

These bene�ts motivate us to aid program selection with distin-

guishing inputs. There is more than one way to generate these in-

puts. An obvious option is to use the LLM to generate test cases [10].

However, as discussed in the example in Section 3, distinguishing

inputs tend to be rare in LLM-generated test cases. Also, the queries

to LLMwould incur signi�cant computational costs. In light of these

observations, we have opted to generate distinguishing inputs us-

ing di�erential testing. Speci�cally, we employ two test generation

techniques, fuzzing and symbolic execution for di�erential testing.

To di�erentiate two program samples, we search for an input violat-

ing an assertion we make that the program samples yield the same

output on every input. First, we use a property-based fuzz testing

tool to �nd tests that produce di�erent outputs in the two programs.

This is done by di�erential fuzzing the two programs %1, %2 where

for any input we check the outputs in %1, %2. If fuzzing fails to

produce a distinguishing input within a time bound ) , we employ

a more systematic symbolic execution tool to �nd distinguishing

inputs within the same time budget ) . The code for both programs

%1, %2 are renamed apart from input variables1 and composed into

a new program &%1,%2 which also contains the assertion i%1,%2
about equivalence of outputs of %1, %2

i%1,%2 ≡ out(%1) == out(%2)

where out(%1), out(%2) denotes the output variable for %1, %2 re-

spectively. The symbolic execution engine analyzes &%1,%2 with

the goal of �nding an input violating i%1,%2.

We show our program selection algorithm in Algorithm 1, where

lines 1—5 correspond to the di�erential testing process. The process

of di�erentiating two samples is represented with the procedure

Di�Test in line 4, which returns a singleton set of distinguishing

inputs for two samples (or an empty set if not found). To distinguish

between more than two samples, we perform this pairwise di�eren-

tiation for the multiple pairs made up from the samples (lines 3–5

of Algorithm 1). Although one can also di�erentiate all samples at

once by making an assertion about all of them, pairwise comparison

makes LLMCodeChoice compatible with any di�erential testing

technique. The process of di�erential testing across samples pro-

duces a set of distinguishing program inputs. These distinguishing

inputs e�ectively de�ne an equivalence relation over the samples,

where two samples are equivalent if they produce the same output

on all the distinguishing inputs. We denote the equivalence relation

with ∼ in line 5 of Algorithm 1; the resulting set of program clusters

is the quotient set � = (/∼. We then conduct oracle inference to

select the correct program cluster from � .

4.2 Speci�cation Selection with LLM

In this section, we explain the key speci�cation selection component

of LLMCodeChoice, which uses the LLM to select the correct

program speci�cation for distinguishing inputs found in Section 4.1.

Given the distinguishing inputs and corresponding outputs from

program clusters, our goal is to select the correct output for all dis-

tinguishing inputs and form the input-output program speci�cation,

thereby selecting the correct program cluster. Algorithm 1 details

the speci�cation selection and cluster selection process. LLMCode-

Choice �rst selects the distinguishing input 8 having the highest

entropy (line 6). The entropy of a distinguishing input 8 is de�ned

as −
∑
:
=:
#

log
=:
#
, where =: is the size of the :-th program cluster,

and # is the total number of programs. The intuition is that by us-

ing the input-output speci�cation of a high-entropy distinguishing

input to �lter the programs, more programs can be ruled out with a

1The only common variables across the two programs %1, %2 are the input variables,
the rest are renamed apart.
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Algorithm 1: Oracle-Guided Program Sample Selection

Input: Task description C0B: , LLM L, program samples (

Output: One selected cluster of program samples

1 I ← { }

2 for (B1, B2) in ( × ( do

3 if ¬∃ 8 ∈ I . B1 (8) ≠ B2 (8) then

4 I ← I ∪ di�Test(B1, B2)

5 � ← (/∼, where B1 ∼ B2 ⇐⇒ ∀ 8 ∈ I . B1 (8) = B2 (8)

6 for 8 in I do

7 >DC?DCB ← { 2 (8) | 2 ∈ � }

8 > ← oracleInference(L, C0B: , 8 , >DC?DCB)

9 � ← { 2 ∈ � | 2 (8) = > }

10 if |� | = 1 then

11 break

12 return the only remaining cluster in �

# Specification selection as a multi -choice question

Please select a correct output from a few choices for

below function.

# function signature and problem description

def foo(args):

""" problem description """

# multi -choice to select correct output

What should be the value of `foo(i)`? `output 1` or `

output 2`?

# Explain the choice

Please explain step by step and answer.

Figure 3: Prompt for Speci�cation Selection

single input, so that the number of queries made to the LLM can be

minimized. For the selected input 8 , LLMCodeChoice then collects

the di�erent outputs 2 (8) of each program cluster 2 (line 7), which

have been recorded during di�erential testing. With the output op-

tions, we invoke the LLM to select the correct output (line 8) with

the speci�cation selection prompt shown in Figure 3. The prompt

has three parts. First, the prompt frames the speci�cation selection

task for LLM as a multiple-choice question. We provide the function

signature and problem description for the LLM to have an initial

understanding of the programming problem. Second, the prompt

takes a distinguishing input and asks LLM to select the correct

answer from the recorded output options. Our intuition is that the

provided output options prune the search space of LLM, so selecting

a correct output frommultiple choices should bemore e�ective than

predicting the right execution result for a given input from scratch.

This intuition was con�rmed by our experiment. Moreover, we

also integrate the popular chain-of-thought prompting [36] which

has been shown e�ective in improving LLM’s accuracy through a

detailed reasoning step, by adding an “explain step by step” request

at the end of the prompt. This step enables the LLM to explain

the possible reasons that produce each output for a distinguishing

input before the LLM selects answers. Afterward, we keep only the

clusters that produce the expected output and �lter out the other

clusters (line 9). We iteratively perform the speci�cation selection

and cluster �ltering with each distinguishing input, until only one

cluster satisfying all the selected input-output speci�cations is left

(lines 10—11). This one cluster is then considered the most likely to

be correct and proposed to the user (line 12).

5 Experiment Setup

We implement the idea of oracle-guided program selection in a tool

LLMCodeChoice and demonstrate its e�ectiveness by addressing

the following research questions:

RQ1: How e�ective are distinguishing inputs in �nding semantic

discrepancies of LLM-generated programs?

RQ2: How e�ective is speci�cation selection in LLMCodeChoice?

RQ3: How e�ective is LLMCodeChoice in the overall program

selection?

RQ4: What are the reasons for failure of LLMCodeChoice?

In RQ1, we �rst compare the e�ectiveness of distinguishing in-

puts generated by LLMCodeChoice against the LLM-based test

generation used in AlphaCode and codeT on HumanEval and

MBPP subjects. In RQ2, we evaluate LLMCodeChoice’s speci�-

cation selection accuracy for the generated distinguishing inputs

to show the e�ectiveness of inferring speci�cation with LLM. We

then demonstrate the overall improvement of pass@1 (probability

of LLM-generated program being correct with only one sample)

by applying LLMCodeChoice in selecting correct LLM-generated

programs on HumanEval and MBPP benchmarks in RQ3. Finally,

we discuss the reasons for incorrect speci�cation selection in our

method through more detailed analysis (RQ4). Additionally, we

discuss the use of our input-output speci�cations in enhancing the

trust of developers in LLM-generated programs (Section 6.5).

Benchmarks. We evaluate LLMCodeChoice on two widely-used

code generation benchmarks HumanEval [11] and MBPP [5]. Hu-

manEval and MBPP are manually curated datasets that consist of

164 and 399 basic Python programming tasks. We removed the

example input-output test cases in the problem descriptions of Hu-

manEval, because the examples overlap with some test cases in the

validation test suite. We modi�ed the prompt of MBPP to the same

format as HumanEval. Each prompt consists of a function signa-

ture and a natural language problem description in the docstring.

However, a recent study [25] shows that the validation test suite of

HumanEval and MBPP benchmarks are relatively weak. This may

cause the acceptance of plausible LLM-generated programs, which

pass the original test suite but are actually incorrect. To mitigate

such risks, we also evaluate LLMCodeChoice on the enhanced

versions of HumanEval+ and MBPP+ [25] equipped with a much

more comprehensive test suite.

Implementation. We use ChatGPT (snapshot gpt-3.5-turbo-0613)

to generate solutions for all tasks in HumanEval and MBPP bench-

marks. Speci�cally, we set the max_token parameter to 1024 which

provides su�cient space for ChatGPT to complete all tasks in bench-

marks, and we keep other parameters as default (e.g., tempera-

ture=1). Our di�erential testing engine (refer to Section 4.1) is built

upon two Python automated testing frameworks Hypothesis [26]

and CrossHair [2]. Hypothesis is a property-based testing tool

using a random testing strategy to �nd counterexamples for post-

conditions, whereas CrossHair attempts to �nd counterexamples

by exploring feasible execution paths with symbolic inputs. We set
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a 3-minute time bound for both tools. For the speci�cation selection

step, we use the GPT-4 (snapshot gpt-4-0613) model from OpenAI.

Metrics and Baselines. We use the pass@1 metric [11] to evaluate

program selection accuracy. For each task, we use LLMCodeChoice

to select one program cluster from all program samples. We then

randomly select one program from the selected program cluster.

The pass@1 of LLMCodeChoice on this task is the probability that

the selected program passes all test cases in the benchmark. Sup-

pose the selected cluster contains # programs, of which = programs

pass all test cases, the pass@1 is then calculated as =/# . For both

benchmarks, we report the average pass@1 across all tasks. We

compare LLMCodeChoice against four baselines, (1) random selec-

tion which randomly selects one program from all LLM-generated

programs, (2) AlphaCode [24], (3) AlphaCode with LLM-based

speci�cation inference, and (4) codeT [10]. The pass@1 of the

baselines are calculated similarly. Since Codex (code-davinci-002)

model used in the original codeT has been deprecated by OpenAI,

we replicated the test case generation process in AlphaCode and

codeT with the most powerful GPT-4 model by reusing codeT’s

artifact and reported the latest result to ensure a fair comparison.

6 Evaluation

In this section, we �rst separately demonstrate the e�ectiveness of

both components of LLMCodeChoice. We then show our improve-

ment over the baselines in the overall selection accuracy. Finally, we

discuss the limitations and unique advantages of LLMCodeChoice.

6.1 RQ1: E�ectiveness of Test Generation

We measure the e�ectiveness of our test-generation component

with the number of di�erent clusters it can identify from the sam-

ples. The number of test inputs generated is also measured. It is

desirable that the component can partition the samples into more

clusters with fewer distinguishing inputs. This would mean that

each input is of higher quality, and wouldmake it easier for a human

to examine these inputs and the resulting clusters.

We compare these two metrics of LLMCodeChoice with Al-

phaCode and codeT. Note that, although AlphaCode and codeT

use the same set of LLM-generated tests, they can produce di�erent

clusters due to their di�erent clustering strategies (see Section 3).

Moreover, we compare with the “ground truth” clusters obtained

by executing the validation test suites in HumanEval+ and MBPP+.

Since the validation test suites contain a large number of carefully

generated tests, one would expect them to �nd the most clusters.

Table 1 shows the metrics of LLMCodeChoice and the baselines.

It can be seen that LLMCodeChoice outperforms all baselines

on the MBPP benchmark. In particular, LLMCodeChoice �nds

24.3% more program clusters than codeT. On HumanEval+, the

average number of program clusters identi�ed by all tools is com-

parable. LLMCodeChoice performs slightly better than codeT,

but slightly worse than AlphaCode. Speci�cally, for 23 of the 164

tasks, LLMCodeChoice �nds fewer clusters than AlphaCode. We

have manually investigated these tasks and found that these tasks

have strict input constraints. For example, task 19 requires the in-

put string to be space-delimited numerals (“zero” to “nine”). Such

constraints are di�cult for our di�erential testing engines based

on random mutation and symbolic execution. However, there are

Table 1: Average number of identi�ed program clusters and

average number of generated test cases of each tool on Hu-

manEval+ and MBPP+.

HumanEval+ MBPP+

avg clusters avg tests avg clusters avg tests

Ground Truth 2.54 740.9 2.18 108.6

AlphaCode 2.56 89.2 2.56 85.3

codeT 2.31 89.2 2.11 85.3

LLMCodeChoice 2.48 1.2 2.71 1.3

also 21 tasks for which LLMCodeChoice found more clusters than

AlphaCode. This implies that the LLM and traditional di�erential

testing techniques can complement each other, e.g., seeding random

mutation with an LLM-generated input. We leave the exploration

of combining both techniques to future work.

A noteworthy special situation during the testing is when no

distinguishing input can be found. In this case, even if two programs

actually have di�erent semantics, LLMCodeChoice would place

them in the same cluster and select them with equal probability.

In the 563 tasks in both benchmarks (164 from HumanEval+ and

399 from MBPP+), the "ground truth" identi�es 251 tasks as having

semantically di�erent programs, but LLMCodeChoice failed to �nd

a distinguishing input for 35 of these. On the other hand, among

the other 312 (=563-251) tasks whose programs are all deemed

equivalent by the "ground truth", LLMCodeChoice managed to

�nd a distinguishing input for as many as 119 tasks. This �nding

indicates that even a carefully constructed test suite may fail to

di�erentiate semantically di�erent samples.

With regard to the number of test cases, LLMCodeChoice uses

no more than 1.3 test cases for each task, which is about 60x fewer

than AlphaCode and codeT. With fewer test cases, LLMCode-

Choice is able to identify a similar or larger number of program

clusters, highlighting the usefulness of our test cases. The small

number of distinguishing inputs allows them to be presented to

developers as evidence before developers accept LLM-generated

code, which we discuss further in Section 6.5.

6.2 RQ2: E�ectiveness of Speci�cation Selection

Speci�cation selection is a key component of LLMCodeChoice,

deciding whether the correct program cluster can be chosen. We

measure its e�ectiveness by the frequency with which it makes a

correct choice throughout our experiment. In total, our experiment

includes 448 speci�cation selection attempts made on 327 tasks of

HumanEval and MBPP. Note that for the other 236 tasks from both

benchmarks, as LLMCodeChoice has identi�ed only one program

cluster, there is no selection to be made. From the 448 selections,

we count out the ones without a correct option. The correct option

can be missing, either because all program samples are wrong, or

because the correct programs have been excluded from the options

due to a previous wrong selection. This leaves 381 selections with

the correct option available, and in these, we count the number

of times the correct option is actually chosen. The correct options

have been obtained by executing the ground-truth program from

the benchmarks on the inputs.
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Table 2: Accuracy of Oracle Inference Strategies: speci�cation

selection via LLMCodeChoice, speci�cation inference from

scratch from LLM, and majority vote.

LLMCodeChoice Direct Inference Majority Vote

HumanEval+ 87.6% 77.0% 71.3%

MBPP+ 82.7% 68.2% 66.8%

Total 84.3% 70.3% 68.2%

We compare our speci�cation selection with two baseline selec-

tion strategies, by applying the strategies to the test inputs involved

in the above-mentioned 381 selections. One baseline is a majority

vote, i.e., selecting the option that is the output of the majority of

the samples. This is similar to AlphaCode, but AlphaCode takes

all inputs into account to identify the majority, while here we only

consider a single input at a time. The other baseline, denoted with

direct inference, is where we remove the options from the prompts

of LLMCodeChoice and use the LLM to predict the output directly.

By comparing with direct inference, we demonstrate the bene�t of

hinting the LLM with program outputs.

We present the result in Table 2. As shown in the table, LLMCode-

Choice has selected the correct output in 321 (84.3%) of the 387

attempts, representing the highest accuracy among all the strate-

gies. This is 14.0% higher than direct inference, highlighting the

bene�t of providing options for the LLM. The majority vote has

an even lower accuracy than direct inference. The fact that the

majority is often incorrect shows the necessity of oracle inference

beyond a simple majority vote.

We further investigate the reason LLMCodeChoice outperforms

direct inference. It turns out that the LLM struggles to handle com-

plex inputs, especially in math problems, while including possible

options in the prompt mitigates this problem. For example, direct

inference did not correctly solve the problem in Figure 4, while

LLMCodeChoice managed to do so.

Please help me find the correct output for the below function.
Please help me select a correct output from a few choices for the below function
def largest_prime_factor(n: int):
    """Return the largest prime factor of n. Assume n > 1 and is not a prime."""
What should be the value of `largest_prime_factor(25191)`?  `311` or `933`?

Please explain step by step and answer.

----------------Response of  Direct Specification Inference ---------------
Let's apply this to `largest_prime_factor(25191)`:
25191 is not divisible by 2 
25191 is divisible by 3 --> 8397 remains (25191/3 = 8397)
8397 is not divisible by any of the prime numbers 2, 3, 5, 7, 11... 
So, the output should be: `8397`

--------------- Response of Specification Selection --------------- 
The process to find out the largest prime factor of a number `n` is as follows:
1. ... 2. ... 3. ...
Consider `n=25191`, ... will find that the prime factors of 25191 are 3, and 311.
Among them, 311 is the largest prime factor.
So, the function `largest_prime_factor(25191)` should return `311`.

Figure 4: Comparison between direct speci�cation inference

(marked in green) and speci�cation selection (marked in

blue) on an example from HumanEval.

Table 3: Overall pass@1 (%) and average token spent on the

HumanEval+, HumanEval, MBPP+, and MBPP benchmarks

with GPT-4 for all tools, excluding all tasks that cannot make

correct program selection. The numbers-/(. ) in the pass@1

(%) columns represent the pass@1 result for enhanced / (orig-

inal) benchmarks respectively.

HumanEval+ (HumanEval) MBPP+ (MBPP)

pass@1 (%) avg tokens pass@1 (%)avg tokens

Random Selection 57.0 (63.1) - 58.1 (69.9) -

AlphaCode 75.6 (80.3) 6319 71.4 (81.6) 5507

codeT 80.8 (86.8) 6319 75.0 (83.3) 5507

LLMCodeChoice-Vote 73.1 (84.7) - 72.0 (81.2) -

LLMCodeChoice-Infer 79.6 (82.5) - 76.9 (81.9) -

LLMCodeChoice 87.7 (89.2) 1533 78.6 (83.2) 1331

6.3 RQ3: Overall E�ectiveness

We have evaluated the two components of LLMCodeChoice in RQ1

and RQ2 separately. In this section, we focus on the overall program

selection accuracy of LLMCodeChoice, measured by the pass@1

metric. This pass rate has been calculated both on HumanEval and

MBPP, and on their enhanced versions HumanEval+ and MBPP+.

We count out the tasks for which the LLM-generated programs

are all correct or all wrong, in which case the program selection

technique makes no di�erence. This leaves 89 tasks in HumanEval

and 162 tasks in MBPP. Apart from pass@1, we also count the

number of LLM tokens used and measure the time usage to show

the cost-e�ectiveness of di�erent program selection techniques.

The baselines we compare against are codeT and AlphaCode. We

present the results in Table 3. Note that in the two pass@1 columns,

the results are of the form X/(Y), where X represents the pass@1

on the enhanced benchmarks and Y represents the pass@1 on the

original benchmarks.

Pass@1. As shown in Table 3, LLMCodeChoice achieves pass@1

of 87.7% and 78.6% on HumanEval+ and MBPP+ respectively, mak-

ing it the most accurate of the techniques. This is followed by

codeT, and AlphaCode has the lowest accuracy. We further an-

alyzed the reason AlphaCode and codeT are not as accurate as

LLMCodeChoice. For AlphaCode, this is due to the limited ability

of the LLM to generate correct programs. Speci�cally, the major-

ity of the LLM-generated programs is often incorrect. The quality

of the initial program samples also has an impact on the "dual-

agreement selection" [10] of codeT. This stresses the importance

of a better program selection strategy beyond majority vote. With

regard to codeT, an equally important factor is the quality of the

LLM-generated test cases. To evaluate the correctness of these tests,

we execute the test cases with the ground-truth programs provided

in the HumanEval+ and MBPP+ benchmarks. If a ground-truth pro-

gram fails a test case, this indicates that the test case is wrong. The

execution results show that on both benchmarks, over 80% of the

tasks have at least one wrong test case. On average, each task has

more than 23 wrong test cases. Remember from Table 1 that there

are about 85 LLM-generated test cases for each task, which means

nearly 25% of the LLM-generated test cases are wrong. This shows

that the LLM is prone to generate incorrect test cases, which would
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impact the accuracy of the dual-agreement selection of codeT. Dif-

ferent from codeT, LLMCodeChoice obtains the expected output

of the test inputs by speci�cation selection.

Ablation Study. We identify the respective contribution of both

components in LLMCodeChoice through an ablation study. Specif-

ically, we evaluate the following two variants of LLMCodeChoice:

• LLMCodeChoice-Vote: selecting the largest program cluster.

• LLMCodeChoice-Infer: replacing speci�cation selection with di-

rect inference, i.e., removing the output options from the prompt.

We can see that partitioning the programs into clusters brings an ac-

curacy gain of 16.1% on HumanEval+ and 13.9% on MBPP+. On top

of the partitioning, comparing LLMCodeChoice-Infer and LLM-

CodeChoice-Vote indicates that speci�cation inference increases

the accuracy by 6.5% and 4.9%. Finally, further providing the LLM

with possible outputs increases the accuracy by 8.1% and 1.7% on

the benchmarks.

Trustworthiness. Over�tting is a common challenge in many re-

search areas, such as machine learning and automated program

repair. It happens when a neural network or a program performs

well on a small number of test cases but fails to generalize to more

tests. A similar case can happen to LLM-generated programs when

the developer only has time to perform a few tests before accepting

an actually incorrect program. To evaluate the extent to which

program selection techniques can mitigate this risk, we simulate

the developer test cases with the original HumanEval and MBPP

benchmarks. We say an LLM-generated program is over�tting if it

passes the original benchmark but fails the enhanced benchmark.

For example, according to Table 3, AlphaCode has a pass@1 of

80.3% on HumanEval+ and 75.6% on HumanEval, indicating that

AlphaCode selected an over�tting program for 4.7% (80.3%-75.6%)

of the tasks. In contrast, this is only 1.5% (89.2%-87.7%) for LLM-

CodeChoice, showing that LLMCodeChoice is less prone to the

over�tting problem. LLMCodeChoice is also the least over�tting

onMBPP. This means that the developer can have greater trust for a

program selected by LLMCodeChoicewhen only limited resources

are available for validating program correctness.

Token Consumption. To apply the program selection techniques

in practice, it is also important to understand their computational

cost. In particular, we count the number of LLM tokens each tech-

nique consumes in the selection process. For LLMCodeChoice, the

tokens are used to perform speci�cation selection, while codeT

consumes tokens to generate test cases. As shown in Table 3, LLM-

CodeChoice has consumed 4x fewer tokens per task on average

than codeT, while still achieving a higher selection accuracy. This

is because LLMCodeChoice produces only a few distinguishing

inputs, on which speci�cation selection is performed. On the other

hand, to perform dual-agreement selection [10], codeT has to sam-

ple a large number of tests to get a good estimate of the majority.

Time usage. Across the tasks in both datasets, the median time

usage of LLMCodeChoice is 221.5 seconds, and that of AlphaCode

and CodeT is 142.1 seconds.

Detection of Wrong Programs. When all programs generated for a

task are wrong, the pass@1 would always be zero, regardless of the

selection technique. Therefore, such tasks have been counted out

Table 4: Four Reasons for Incorrect Speci�cation Selection

in LLMCodeChoice.

Wrong Incomplete Ambiguous Wrong

Choice Problem Problem Ground Truth

HumanEval+ 6 5 2 2

MBPP+ 15 17 2 11

Total (35.0%) 21 (36.7%) 22 (6.7%) 4 (21.6%) 13

Table 5: Causes of the 21 wrong choices by LLMCodeChoice.

Type of mistakes Occurences

Incorrect calculation 11

Misunderstanding of problem 5

Hallucinated precondition 3

Incorrect reasoning 1

Use of incorrect fact 1

of the pass@1 evaluation. However, LLMCodeChoicemay identify

such a case when the LLM chooses none of the provided output

options. Overall, there are 28 such tasks in HumanEval+ and 90 in

MBPP+, and LLMCodeChoice could detect 30 of these cases.

Summary. Overall, our experiment shows that LLMCodeChoice

improves pass@1 over random selections by 6.7% to 16.6% and

outperforms all baselines. LLMCodeChoice also consumes signi�-

cantly fewer computation resources (number of tokens) compared

to other baselines, indicating its potential for deployment in real-

world development processes.

6.4 RQ4: Reasons For Failure

In this section, we investigate the causes of incorrect speci�ca-

tion selection made by LLMCodeChoice. While LLMCodeChoice

achieves high accuracy in speci�cation selection, it failed to make

the correct choice in 60 of the 381 selection attempts throughout

our experiment. We divide the failure reasons of these attempts into

four categories in Table 4. Two authors made the categorization

independently and discussed their di�erences with a non-author

PhD student from the department to reach an agreement.

Wrong Choice. This means LLMCodeChoice selects an incor-

rect output from all possible output options for a distinguishing

input, when the expected behavior is clearly de�ned by the problem

description. This category accounts for 35.0% of the incorrect selec-

tions in our experiment. Since this category of failures is particularly

important for understanding the application scope of LLMCode-

Choice, we inspected the 21 mistakes in this category and further

divided them into 5 types, as shown in Table 5.

In Table 5, incorrect calculation is the prevailing type of error,

representing 11wrong choices. This error typemeans the LLM takes

the right steps to reason about the expected output, but the concrete

result of a certain step is wrong. The 11 errors can be further divided

into 8 arithmetic errors, 2 string manipulation errors, and 1 logical

error. As an example of arithmetic error, task 782 ofMBPP calculates

the sum of the odd-length subarrays of an array. When given a

distinguishing input [0,-1], the LLM made a mistake by stating that

“the possible odd-length subarrays are [0], [-1], and [0, -1]”. It is

a known issue that LLMs can often make mistakes in calculation,
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even when specially trained on massive mathematical content [22].

This suggests that an LLM might be less e�ective as an oracle when

the program requirements involve complex arithmetic calculations.

The second most common type of error is misunderstanding of

problem, roughly accounting for 1/4 of the wrong choices. For ex-

ample, task 454 of MBPP involves telling whether a string contains

‘z’. The quotes around the letter z mean an exact match is required

(i.e., case-sensitive). However, the LLM overlooked this detail and

wrongly stated that the string ‘Z’ also contains ‘z’. This type of error

suggests that the accuracy of LLMCodeChoice can be negatively

impacted when the requirement is not clear or explicit enough.

The third largest error type is hallucinated precondition, account-

ing for 3 wrong choices. In this error type, the LLM “rejects” an

input because the input does not satisfy a certain precondition hal-

lucinated by the LLM. For example, task 803 of MBPP tells whether

an integer is a perfect square. When given the input -1, the LLM

does not respond with the correct answer “False”. Instead, the LLM

hallucinated that the input must be non-negative and stated that

an exception should be thrown for -1, since “it is mathematically

impossible for negative numbers to be perfect squares.” While this

type of error can also reduce the accuracy of selection, we note

that a user of LLMCodeChoice can easily identify such an error by

reading the LLM’s response, if the selected output is an exception.

Finally, there are another two less common error types. Incorrect

reasoning is related to a complex math problem that the LLM failed

to reason about, while use of incorrect fact occurred when the LLM

used a mistaken formula to solve a problem.

Incomplete Problem. Incomplete problem represents a situation

where the task description does not explicitly specify correct ex-

ecution behaviors triggered by distinguishing inputs or lack of

de�nition for speci�c terms. These distinguishing inputs are often

edge cases for the programming tasks, which accounts for 36.7%

incorrect speci�cation selection. For example, (1) how to handle

empty strings, (2) what exceptions to throw when the program

crashes, etc. Incomplete problems are especially common in MBPP,

because of their vague descriptions. For example, task 264 in MBPP

asks to implement a function to calculate a dog’s age in dog’s years,

without specifying the de�nition of dog’s year. However, we �nd

that the original online description for task 264 clearly explained

the relation between dog’s year and human’s year 2.

Ambiguous Problem. We categorize an incorrect speci�cation

selection as an ambiguous problem if two authors independently

propose more than one interpretation of the natural language de-

scription and LLMCodeChoice selects the output that is di�erent

from the interpretation of ground truth implementation, it accounts

for 6.7% of incorrect speci�cation selection. Figure 5 shows one

example from HumanEval benchmark. The “triples_sum_to_zero”

task checks if there are three distinct elements in the list sum to

zero. There are two interpretations of the task because distinct ele-

ments can either refer to elements of di�erent values, or elements of

di�erent indices. Both of the two interpretations are correct, but the

ambiguity confused LLMCodeChoice and led to incorrect output

when given triples_sum_to_zero[0,0,0] as the distinguishing input.

2https://www.w3resource.com/python-exercises/python-conditional-exercise-
31.php

1 # Task 40

2 def triples_sum_to_zero(l: list):

3 """ takes a list of integers as an input. it returns True if there are

three distinct elements in the list that sum to zero , and False

otherwise.

4 """

5 - if len(l) < 3 or len(set(l)) < 3:

6 - return False

7 for i in range(n-2):

8 for j in range(i+1, n-1):

9 for k in range(j+1, n):

10 if l[i]+l[j]+l[k]==0:

11 return True

12 return False

Figure 5: Example of ambiguous task description from Hu-

manEval benchmark. The ambiguous point is the interpre-

tation of “distinct elements”. Lines 5-6 show the speci�c im-

plementation of the misinterpreted concept.

Wrong Ground Truth. We have also identi�ed 13 cases where we

believe the speci�cation selection is correct and the ground truth

program from the benchmarks is wrong, which accounts for 21.6%

of the incorrect speci�cation selections. For example, task 799 in

MBPP asks to “Write a function def left_rotate(n, d) to that rotate left

bits by d bits a given number. We assume that the number is 32 bit”.

For input (n=16, d=28), the correct output should be ‘1’, because, in

32 bits representation, there are 27 leading zeros before the number

16 (10000), therefore the 28 times left shifts should move the 1 to the

rightmost bit, which represents 1 in decimal. However, the ground

truth solution produces ‘4294967297’, which represents a 33-bit

binary number. This shows the practical value of LLMCodeChoice

in witnessing developers’ mistakes. By contemplating the input

and the output proposed by LLMCodeChoice, the developer has a

greater chance to be alerted and avoid such errors. We share our

explanations for each wrong ground truth in our artifact.

6.5 Discussion of Selected Speci�cation

We have shown several limitations of the speci�cation selection of

LLMCodeChoice in RQ4. While most existing works focus on im-

proving the pass@k result of LLM-generated programs, we propose

the perspective that providing explainable evidence to developers is

more important than unexplained pass@k. In this section, we discuss

how we can utilize the byproduct of input-output speci�cation

from LLMCodeChoice to improve developers’ con�dence through

a case study of tasks categorized as Ambiguity and Incomplete

Speci�cation in RQ4.

Contradictory Explanations. Similar to oracle-guided program

synthesis [17], one advantage of LLMCodeChoice is the small-

sized distinguishing input-output speci�cation. We propose a pre-

liminary idea called contradictory explanation generation to gen-

erate meaningful feedback for developers before they accept any

suggestion from AI programming assistants. We obtain the con-

tradictory explanation in two phases, explanation derivation and

contradictory feedback. In the explanation derivation phase, for

a distinguishing input 8 and the output > of each program cluster,

we prompt the LLM with “the task returns o on input i because..”,

so that the LLM completes the sentence with an explanation of

the output. Explanations of the di�erent outputs may contradict

each other. In the contradictory feedback phase, we put the task

description and the explanations in one prompt, prompting the
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Q: The triples_sum_to_zero([0,0,0]) returns False because ...
A: The elements are not distinct. They are all equal to 0.

Q: The triples_sum_to_zero([0,0,0]) returns True because ...
A: The three zeros in the list sum up to zero.

Q: I have two explanations for triples_to_sum_to_zero, are there
any ambiguous or other problems?
A: The explanations are contradictory, hence there is an ambiguity
in the understanding of what constitutes "distinct elements" in the
context of this problem.

Figure 6: Example of contradictory explanation process for

‘triples_sum_to_zero’. We �rst use the LLM to derive an ex-

planation for each input-output pair. Then we take those

explanations and query LLM again to identify the reasons

for producing di�erent explanations.

LLM to identify the reason that the task description allows con-

tradictory explanations. Figure 6 shows task 40 of HumanEval as

an example, where the LLM correctly explains the ambiguity of

“distinct element” from the two contradicted explanations.

Evaluation. We implemented the contradictory explanation idea

and conducted a preliminary evaluation on the tasks where LLM-

CodeChoice selected incorrect speci�cations. We again asked the

volunteer PhD student who helped categorize reasons for incorrect

speci�cation selections as an external developer to evaluate the con-

tradictory feedback generated by LLM. If contradictory feedback

points out ambiguity or incompleteness in a problem description,

and the volunteer thinks the feedback correctly explained the prob-

lem, we mark the task as resolved. In total, we resolved 14 of the

26 tasks with incomplete speci�cation or ambiguity, which shows

the potential of applying the input-output speci�cation as a trust-

worthy guard for future automatic programming. In future work,

we will investigate how to create a more comprehensive technique

to produce feedback for code from LLM.

7 Threats to Validity

Internal Threats. A threat to internal validity is that our di�er-

ential testing engine cannot guarantee to �nd all distinguishing

inputs. There might exist distinguishing input that our di�erential

testing engine fails to identify. Thus, the program clusters com-

puted are not guaranteed to be fully accurate. Another threat is

that our experiment compares LLMCodeChoice with AlphaCode

and codeT. However, the OpenAI Codex (code-davinci-002) model

used by codeT has been deprecated. To address this, we replaced

the Codex model with GPT-4 model in the experiment for LLM-

CodeChoice and codeT and we replicated codeT’s result using its

artifact. While GPT-4 is one of the most powerful LLMs as of now,

we believe this replacement will also bring bene�t to codeT.

External Threats. The external threat may arise regarding the

LLM we selected. Although there are many other open-source large

language models [24, 33], our experiment only evaluated LLMCode-

Choice using GPT-4, because it is the most representative LLM we

can access. To mitigate this threat, we release LLMCodeChoice’s

implementation to facilitate more detailed evaluation and future de-

velopment in the community. Nevertheless, our experiments show

the e�ectiveness and potential of oracle inference with LLM.

Another external threat is the type of programs LLMCodeChoice

can be applied to. In our experiments, LLMCodeChoice was only

applied to standalone (self-contained) programs. If the task if to

generate a non-standalone program, e.g., when the program is a

complex project consisting of multiple components, or when the

program is a library consisting of di�erent utility functions, the

application of LLMCodeChoicemay require adjustments to re�ect

the particularities of the application domain. We leave investigating

the selection of non-standalone programs for future work.

Finally, in terms of the modality of program output, LLMCode-

Choice currently deals only with output that can be represented

in text. LLMCodeChoice may not be applied directly when the

output has a di�erent modality, e.g., when the program plots an

image. To mitigate this threat, a multimodal LLM can potentially

be used, and LLMCodeChoice can be adapted to compare program

outputs of other modalities.

8 Conclusion

In this paper, we propose LLMCodeChoice to improve the trust-

worthiness of LLM-generated programs with a new perspective of

retrieving program speci�cations from natural language descrip-

tions. LLMCodeChoice curates distinguishing inputs to reveal

di�erences between LLM-generated programs and further utilizes

LLM to select the correct output for those distinguishing inputs

from all possibilities. Our evaluation on the generation of stan-

dalone programs within HumanEval and MBPP demonstrates its

e�ectiveness. We conclude with the following perspectives:

• Semantic analysis based test generation for LLM generated pro-

grams is important. The byproducts from semantic analysis, in

our case the distinguishing tests, can be potentially used as evi-

dence of "correctness" of LLM-generated programs to enhance

developers’ trust when using AI programming assistants.

• Automated program speci�cation generation fromLLMs is promis-

ing. Despite not being perfect, they can be valuable hints to alert

the users of AI-programming assistants about potential untrust-

worthiness in the automatically generated programs and they can

be used for low-e�ort human-assisted gradual oracle inference.

Data Availability

We release LLMCodeChoice and all data mentioned in the pa-

per at https://doi.org/10.5281/zenodo.10390291 to facilitate future

research.
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