
SpecRover: Code Intent Extraction via LLMs
Haifeng Ruan*

National University of Singapore
Singapore

hruan@comp.nus.edu.sg

Yuntong Zhang*

National University of Singapore
Singapore

yuntong@comp.nus.edu.sg

Abhik Roychoudhury
National University of Singapore

Singapore
abhik@comp.nus.edu.sg

Abstract—Autonomous program improvement typically in-
volves automatically producing bug fixes and feature additions.
Such program improvement can be accomplished by a combi-
nation of large language model (LLM) and program analysis
capabilities, in the form of an LLM agent. Since program repair
or program improvement typically requires a specification of
intended behavior - specification inference can be useful for
producing high quality program patches. In this work, we ex-
amine efficient and low-cost workflows for iterative specification
inference within an LLM agent. Given a GitHub issue to be
resolved in a software project, our goal is to conduct iterative
code search accompanied by specification inference - thereby
inferring intent from both the project structure and behavior.
The intent thus captured is examined by a reviewer agent with
the goal of vetting the patches as well as providing a measure of
confidence in the vetted patches. Our approach SpecRover is built
on the open-source LLM agent AutoCodeRover. In an evaluation
on the full SWE-Bench consisting of 2294 GitHub issues, it shows
more than 50% improvement in efficacy over AutoCodeRover.
Compared to the open-source agents available, our work shows
modest cost ($0.65 per issue) in resolving an average GitHub issue
in SWE-Bench lite. The production of explanation by SpecRover
allows for a better “signal” to be given to the developer, on
when the suggested patches can be accepted with confidence.
SpecRover also seeks to demonstrate the continued importance
of specification inference in automated program repair, even as
program repair technologies enter the LLM era.

I. INTRODUCTION

Automatic programming has long been an aspiration of soft-
ware engineering research. It has inspired research in topics
like program synthesis and repair. In recent times, automatic
programming from natural language specifications has become
somewhat more realistic due to the emergence of tools like
GitHub Copilot. At the same time, the automatically generated
code from Large Language Models (LLMs) suffers from errors
and vulnerabilities [1], [2] and needs to be improved. For this
reason, there has been a recent research focus on autonomous
program improvement. The problem setting for autonomous
program improvement involves solving of GitHub issues
which would typically involve bug fixes or feature additions.
Though these tools are employed on manually written software
projects such as the recently proposed SWE-bench [3], they
hold the promise of high quality trustworthy code construction
from LLMs. Starting with the AI software engineer Devin [4]
from a stealth startup, recently several autonomous program
improvement tools such as AutoCodeRover [5] have been
proposed for automatically solving GitHub issues (such as bug

*Joint first authors, ordered alphabetically.

fixes or feature additions). By combining these technologies
with code generation via GitHub Copilot, one can envision
trustworthy code construction from LLMs.

Program improvement or program repair, typically requires
capturing developer intent to guide the process. However, there
is no formal specification of developer intent. The natural-
language description of the developer intent is usually only
available at a “higher level” - it captures the intended behavior
of the entire software system. However to improve or repair
specific components of a software system (where the error
might have been localized) - one needs to infer specifications
of the different components. A successful approach to program
repair may thus involve specification inference - where by
carefully analyzing the artifacts of the buggy program (such
as program executions), we can infer snippets of the intended
program behavior. The works on semantic program repair [6],
[7] extract specifications via symbolic analysis of the given
tests. Indeed, the existing literature on program repair [8] uses
a given test-suite as developer intent, and hence is focused
on avoiding test-data over-fitting. The works on semantic
repair alleviate the over-fitting concern by inferring symbolic
specifications from tests. Nevertheless, for the general problem
of program improvement, the buggy program may or may
not be accompanied by tests. Moreover, symbolic analysis
based program repair has a high entry barrier for developers.
For these reasons, recently autonomous program improvement
using Large Language Models (LLMs) [5], [9], [10] has been
studied.

In this work, we explore the role of program specifications
thoroughly in LLM-guided autonomous software engineering
workflows. To understand the intent of the developer and per-
form program improvement based on inferred specifications,
we build our work on the publicly available AutoCodeRover
[5] tool. The reason for this choice is strategic. In essence,
AutoCodeRover takes the position that the structure of the
program also captures a coarse encoding of the developer
intent, and it tries to glean intent by analyzing (and searching
over) the program structure; it performs code search on the
project structure for fix localization. Thus, to build a workflow
where we conduct high quality program improvement via
iterative specification inference, we choose to build our work
on AutoCodeRover. Our work looks into various sources
of specifications such as function-level code summaries and
testcases, apart from program structure. The core contribution
thus lies in distilling the various specifications coming from

1

different sources into a single patch.
We thus present SpecRover, a progeny of AutoCodeRover,

which conducts and exploits more powerful specification
inference. Starting from a GitHub issue, it conducts code
search guided by the program structure, as in AutoCodeRover.
However, in the process of the code search, as it visits class-
es/methods, it also calculates and deposits the specifications of
the classes/methods which would have allowed for remediation
of the observable error, thereby capturing intended program
behavior. The specifications gathered from the code search
are deposited along with generated tests to a reviewer agent.
The reviewer agent studies the specifications, generated tests,
and natural language requirements to guide the patching.
More importantly, the reviewer agent produces evidence of
confidence in the reported patch.

Contributions: The core contributions of our work on
SpecRover can be summarized as follows.

• Specification Inference: We examine the role of speci-
fication inference in LLM guided autonomous software
engineering. Our work suggests iterative specification
inference to guide patching in LLM oriented program
repair workflows. Once the understanding of developer
intent is accomplished via iterative specification infer-
ence, patch construction is a natural by-product of the
inferred specification.

• Suggesting patches with confidence: We design a re-
viewer agent for code review which reconciles speci-
fications, tests and natural language requirements. The
reviewer agent can be seen as conducting a comprehen-
sive patch validation. The reviewer agent can produce
evidence of correctness of automatically generated fixes
- such as explanation of patch, reproducer test, and the
accumulated specifications from different code elements.
These evidence can be maintained along with the auto-
matically generated patches, to track future regressions.

• Experimental evidence: Our tool shows high efficacy,
solving 19.3% issues in full SWE-bench and 31% on
SWE-bench lite. We also balance other needs from LLM
agents such as low cost ($0.65 per issue) and supporting
higher precision/recall. Our tool is available open-source
in Zenodo and will be publicly released upon acceptance.

II. MOTIVATING EXAMPLE

We now present the SpecRover approach via an example.
The GitHub issue involved in this example is scikit-learn-
155351, shown in Figure 1a. In the issue, two relevant code
snippets are provided. According to the issue report, both
snippets had worked without problem on an older version
of scikit-learn, and it is expected that they continue to work
on the current version. However, on the current version, the
first snippet now crashes. The associated error information
indicates that the crash occurred when scikit-learn mistakenly
tries to convert a non-numeric array element into a float.

1https://github.com/scikit-learn/scikit-learn/issues/15534

regression in input validation of clustering metrics
from sklearn.metrics.cluster import mutual_info_score
import numpy as np

x = np.random.choice(['a', 'b'], size=20).astype(object)
mutual_info_score(x, x)

ValueError: could not convert string to float: 'b'
while
x = np.random.choice(['a', 'b'], size=20)
mutual_info_score(x, x)

works with a warning?
this worked in 0.21.1 without a warning (as I think it should)

(a) Issue statement.

def check_array(array, ...):
 dtype_orig = getattr(array, "dtype", None)
 ...
 if dtype_orig is not None and dtype_orig.kind == "O":
 # if input is object, convert to float.
 dtype = np.float64
 ...
 if dtype_numeric and array.dtype.kind == "O":
 array = array.astype(np.float64)
 ...

(b) Buggy function.
Intended behavior: The check_array method should validate the
input array without attempting to convert arrays with dtype
object containing non-numeric strings to float. ... If the array
contains non-numeric strings, it should skip the conversion to
float and proceed with the validation. ...
(c) Inferred intended behavior of the buggy function.

The patch attempts to handle non-numeric strings by
catching a ValueError during the conversion to float.
However, it does not correctly handle the case where
the input contains non-numeric strings. The patch still
tries to convert the array to float later in the code,
which results in the same ValueError. The patch does not
resolve the issue.

(d) Reviewer feedback on initial patch.

--- a/sklearn/utils/validation.py
+++ b/sklearn/utils/validation.py
@@ -459,8 +459,13 @@ def check_array(array, ...
 ...
 if dtype_orig is not None and dtype_orig.kind == "O":
- # if input is object, convert to float.
- dtype = np.float64
+ # if input is object, check if it contains non-numeric strings
+ try:
+ array.astype(np.float64)
+ dtype = np.float64
+ except ValueError:
+ # contains non-numeric strings, skip conversion
+ dtype = None
 ...

@@ -551,7 +556,11 @@ def check_array(array, ...
 ...
- array = array.astype(np.float64)
+ try:
+ array = array.astype(np.float64)
+ except ValueError:
+ # contains non-numeric strings, skip conversion
+ pass
 ...

(e) Final patch generated by SpecRover.

Fig. 1: scikit-learn-15535 description and SpecRover artifacts.

To resolve the issue, SpecRover first identifies buggy pro-
gram locations by exploring the program and retrieving rel-
evant code. In this example, the identified buggy method is
check_array, shown in Figure 1b. The method performs
two conversions of string to float. The two conversions are
the root cause of the failure reported in the issue, resulting
in an exception when the involved string is non-numeric.
SpecRover inferred a summary of intended behavior of the
method check_array (shown in Figure 1c), which serves
as a specification of how the method should be modified.

Next, the identified buggy method and its intended behavior
are passed to our patching agent, which will write patches for

2

https://github.com/scikit-learn/scikit-learn/issues/15534

the method. At the first attempt, the patching agent wrote a
partial patch, which only contains the first of the two hunks in
Figure 1e, i.e., the patch only catches exceptions for the first
conversion. Without further rectification of the patch, the issue
could not be resolved. To vet the patch for potential mistakes,
the initial patch is then passed to the reviewer agent. Apart
from the patch, the reviewer agent also takes a reproducer
test that reproduces the issue. The reviewer agent then runs
the reproducer test on both the original program and the
program repaired by the initial patch. By referring to the error
information, the patch, and the issue statement, the reviewer
agent is able to give the feedback as shown in Figure 1d.
The feedback correctly indicates that the initial patch does not
resolve the issue and can be rectified by catching exceptions
for the other string conversion. Finally, the feedback is passed
to the patching agent, which writes the correct patch shown
in Figure 1e.

In this example, we illustrated how our reviewer agent
provides feedback on an incorrect patch for our patch-writing
agent. The feedback leads to a later rectification of the patch,
and explains clearly why the initial patch is incorrect.

III. METHODOLOGY

A. Overview

Problem setup: Given a software codebase C and a
natural language problem description D, the goal is to auto-
matically derive a patch p (i.e. a set of code modifications) to
C, such that the patched codebase C ′ satisfies the requirements
in D. One example setup for D is GitHub issues, in which
the issue description contains requirements for fixing a bug or
adding a new feature.

In this paper, we drive autonomous program improvement
with the help of program specifications. We try to acquire an
understanding of the intended program behavior (the specifi-
cation), which then allows us to produce high-quality patches
that successfully resolve GitHub issues. Beyond producing
high-quality patches, an additional benefit of understanding
the specification is that it also serves as evidence as to why the
patch is correct. The evidence holds promise in terms of easing
software maintenance and engendering trust in the code. The
key novelty of our approach lies in how we infer and utilize
various forms of specifications. For an overview of all the
specifications involved, we depict the general workflow of our
approach SpecRover in Figure 2. In this figure, the inferred
specifications are highlighted in yellow. We also highlight in
blue all the LLM agents present in the workflow. As shown in
Figure 2, the specifications are inferred in an iterative fashion:
the agents take in specifications, possibly produced by other
agents, and in turn infer new forms of specifications. This
iterative process generates a variety of specifications, until a
patch is generated and deemed correct by one of our agents
that vets generated patches.

Specifically, as shown in Figure 2, the following specifica-
tions are inferred in sequence in SpecRover, which is given
as input an issue statement and a software codebase.

1) The input issue statement is passed to a reproducer
agent, which writes a reproducer test that reproduces the
program fault reported in the issue.

2) The reproducer test, its execution results, along with the
issue statement and the codebase, are passed to a context
retrieval agent. The context retrieval agent explores the
program codebase and identifies the relevant code to the
issue. It eventually decides on a set of buggy locations
that need patching.

3) The context retrieval agent also produces a function
summary for every function encountered while exploring
the program code. A function summary describes the
intended behavior of a function in natural language, with
respect to the current issue being solved.

4) The buggy locations, together with their corresponding
function summaries, are passed to a patching agent, which
tries to write a patch to resolve the issue.

5) The patch and the reproducer test are passed to a reviewer
agent for scrutiny. The reviewer agent will produce a
reviewer feedback if the patch is deemed incorrect; the
patching agent will take in the reviewer feedback and try
writing another patch. The reviewer feedback is a natural-
language explanation of why the patch is incorrect and
how it can be rectified. Likewise, a reviewer feedback for
the reproducer test will be produced at the same time if
the test is deemed incorrect.

6) If a patch is deemed correct by the reviewer agent, and
there is an existing regression test suite available for the
program, the patch will be checked via the regression test
suite. If there is no regression, the patch will be accepted
as the final patch. Otherwise, if some of the regression
tests fail, we will retry the workflow up to a predefined
number of times.

7) Finally, after multiple retries, there can be multiple patch
candidates. A selection agent is invoked to select one final
patch among the patch candidates, and give the reason
why this patch is selected. The final patch, the reason for
selection, and optionally the rest of the candidate patches
will be sent to the user.

Among the specifications, the 3) function summary and 5)
reviewer feedback are unique to SpecRover and unexplored
by other LLM agents. These specifications have boosted
the effectiveness of SpecRover in resolving software issues,
because they fully exploit different kinds of software artifacts:
the function summary exploits the program code behavior, and
the reviewer feedback exploits both the code and the test.

B. Function Summary: Specification from Program

In this section, we first describe how the context retrieval
agent gathers code context for the software issue to be re-
solved. We then discuss how SpecRover transforms the user
intent in the issue description into program specifications for
shorter code elements such as functions.

Existing LLM programming agents typically employ a
context retrieval step to collect necessary code context related
to the given issue from a large codebase. SpecRover follows

3

Patches

Context

Retrival Agent

Reproducer

Agent

Patching

Agent

Reviewer

Agent

Issue

Statement

Codebase

Patch Regression?

Retries

Inferred Spec

Agent

Reviewer

Feedback

patch

OK

patch not OK
Yes

No

Inputs

Reproducer

Test

Optional Input

Buggy

Locations

Function

Summaries

Regression

Test Suite

Final Patch

Patches
Selection

AgentPatches

Fig. 2: Overall Workflow of SpecRover.

search_class("Foo");

search_method("Bar", "baz")

search_....

No

Yes

Issue

Statement

Reproducer

Test

Sufficient?

Context Retrieval

Function

Summaries

Code

Snippets

Function

Summaries

Code

Snippets

Function

Summaries

Buggy

Locations

Function

Summaries

Buggy

Locations

Fig. 3: Context retrieval in SpecRover.

the general architectural design of programming agents in
its context retrieval stage, as shown in Figure 3. SpecRover
conducts context retrieval by providing a set of APIs to the
LLM for exploring the codebase. The LLM agent invokes
the retrieval APIs to investigate the relevant code snippets in
the program. The retrieved code forms the code context for
the current to-be-resolved issue, which can contain definitions
of the relevant classes and methods. After each round of
retrieval API invocations, the LLM agent takes the code
context collected so far and decides whether the context is
sufficient for understanding and resolving the problem. If the
context is deemed sufficient, the retrieval process will end,
and the agent will decide on a set of buggy locations, which
are sent to the patching agent for repairing. Otherwise, the
retrieval process continues until a predefined threshold count
is reached.

One key novelty in SpecRover is the explicit extraction
of function summaries while collecting code snippets during
context retrieval. In SpecRover, whenever a new code snippet
is retrieved with an API and sent to the context retrieval
agent, we explicitly prompt the agent to analyze the “intended
behavior” of this code snippet in the current problem context.

The intended behavior (or specification) is a concise natural-
language summary of how a function should behave to meet
the requirements specified in the high-level problem descrip-
tion. This function-level summary of intended behavior serves
as a local specification to guide the patch construction. The
system-level intended behavior specification given by the user
(i.e. the issue description) is often on how the program should
behave rather than how a unit function should behave. So
we usually do not have the intended behavior of a function.
Although the issue description may provide some “direction”
on the intended behavior of a function - it is usually not
sufficient to guide the patching agent. On the other hand, the
extracted function-level specification (capturing the intended
behavior of the function) serves as a more direct guide to
the patching agent. Instead of giving a set of bug locations
{L1, L2, ..., Ln} to the patching agent to modify, SpecRover
gives the pairs of bug locations and their corresponding lo-
cal specification {(L1, Spec1), (L2, Spec2), ..., (Ln, Specn)}.
The patching agent can then refer to the specifications of
intended behavior and modify code at the function level (so
as to achieve this intended behavior). Intuitively, our approach
decomposes the repository-level issue solving task to several
function-level code modification tasks, in which each function-
level task has a natural language specification. LLMs have
been extensively studied for function-level coding tasks and
have shown promising results in function-level benchmarks
such as HumanEval [11], [12] and MBPP [13]. Therefore,
this task decomposition helps the patching agent of SpecRover
which then has to solve smaller and more manageable tasks.

C. Reviewer Feedback: Reconciling Specifications

Another kind of specification inferred by SpecRover is the
reviewer feedback. To be more precise, the reviewer feedback
can be called a meta-specification: it is a reflection on the
specifications inferred in previous steps. Concretely, given a
patch and a reproducer test, the reviewer agent in SpecRover
will provide feedback, which includes 1) a binary decision
of whether the patch and the reproducer test are correct
respectively; and 2) an explanation for the decisions.

4

The reviewer feedback contributes to our specification in-
ference practice in two ways. First, it makes the specification
inference iterative. The reviewer feedback will be passed back
to the patching agent and the reproducer agent, leading to im-
proved patches and reproducer tests. Second, it reconciles the
patch and the test. In this way, errors that are not obvious when
examining the two separately can be revealed and rectified.
What makes the reviewer feedback important is the absence
of a suitable test suite. If a test suite was available for checking
whether the issue has been resolved, patch correctness could
be easily decided. In reality, however, issues occur when the
program already passes the accompanying regression tests,
which means that a high quality test-suite to check a generated
patch (for the given issue) is usually not available.

To mitigate the lack of an issue-revealing test case,
SpecRover writes a reproducer test via the reproducer agent.
However, this test alone is not sufficient for deciding patch cor-
rectness. This is because the reproducer test can be incorrect,
due to the non-determinism of the LLM, i.e., the test may fail
a patch that actually conforms to the user intent. Besides, the
reproducer test can also be incomplete description of intent,
i.e., a patch may pass the test without completely resolving
the issue. The limitation of the reproducer test derives from
the fact that tests are a precise yet incomplete specification.
To overcome the limitation, we make the observation that the
natural-language issue statement is ambiguous in nature yet
often contains richer information. Therefore, supplementing
the test with an understanding of the issue statement is likely
to help decide patch correctness. This is accomplished in
the reviewer agent of SpecRover, which considers the issue
statement as well as test to vet patch candidates.

Beyond deciding on patch correctness, the more important
aspect of the reviewer feedback is an explanation of the
decision made, which will help the patch agent rectify an
incorrect patch. Further, for a correct patch, the explanation
will help the user understand and accept the patch. The user
can merge the reviewer feedback into the software together
with the patch for future reference, which will help software
maintenance in the long run.

An issue has been submitted. Engineer A has written a reproduction test for the issue.
Engineer B has written a patch for the issue. Your task is to decide whether the created
patch resolves the issue.
NOTE: both the test and the patch may be wrong.
Here is the issue: ...
Here is the test written by Engineer A: ...
Here is the result of executing the test on the original buggy program: ...
Here is the patch written by Engineer B: ...
Here is the result of executing the test on the patched program: ...
Think about
(1) whether the test correctly reproduces the issue, and
(2) whether the patch resolves the issue.

Fig. 4: Template prompt for the reviewer agent.

Our reviewer agent generates the feedback in two steps.
First, the original program and the patched program are run
on the reproducer test. In both runs, execution information
including the output and the exit code are collected. The
reviewer agent then provides the LLM with these execution
information, along with the issue statement and the reproducer
test. The LLM is prompted to decide whether the patch and

the test are correct respectively, and to provide explanations
for both decisions. Figure 4 shows the template of the prompt.

D. Patch Selection

As shown in Figure 2, a patch approved by the reviewer
agent is checked through a regression test suite, which serves
as an oracle for whether the patch breaks existing functionality
of the program. However, in the setting of resolving GitHub
issues, the regression test suite can be an inaccurate oracle,
meaning that they can reject correct patches which resolve
the issue. This is because the correct patch may inevitably
modify existing functionalities of the program while resolving
the issue, thus causing some of the existing regression tests to
fail. For example, if the patch needs to modify the signature of
an existing function f in order to resolve an issue, regression
tests that invoke f will now fail. Since the correct patch can be
rejected by the regression tests, we employ a patch selection
process at the end of the workflow to select the most promising
patches among the rejected candidate patches.

During the final patch selection phase, SpecRover goes
beyond the test cases and employs a selection agent to choose
a patch based on the natural language issue description. All
candidate patches that failed some tests are presented to
the selection agent, together with the issue description. The
selection agent is instructed to analyze the root cause of the
issue, think about how the issue can be possibly resolved,
and select a patch that best addresses the issue. This natural
language-guided patch selection can recover correct patches
that are mistakenly filtered out by an inaccurate test suite. It
exploits the natural language issue report as that captures the
most up-to-date intents from users/developers. While making a
choice among the candidate patches, the selection agent also
explicitly states a reason why it chooses a particular patch
among the candidate patches. This “reason for selection” can
be given as evidence together with the final patch.

E. Evidence

SpecRover is designed to not only generate a patch to
resolve the issues in software repositories, but also to provide
the inferred specifications as evidence for why a patch was
selected. Specifically, along with the final patch, the following
artifacts can be the outputs of SpecRover as well:

• Buggy locations and their intended behaviors.
• The reproducer test written by the reproducer agent.
• The reason why the final patch was approved by the

reviewer agent (if the patch is approved by the reviewer
and the regression test suite).

• The reason why the final patch is selected by the selection
agent (if there are multiple candidate patches which
cannot be differentiated by the tests).

The benefits of generating evidence are threefold. First,
these artifacts can guide the LLM agents in constructing
higher quality patches, as discussed in Section III-B and III-C.
Second, the natural language artifacts can assist the developers
in understanding the auto-generated patches more quickly.
Before examining the actual patch, developers can gain a

5

preliminary understanding of the changes by reviewing the
reasons for approval or selection and the intended behaviors
for the buggy locations. Last but not least, the evidence can be
integrated into the software repository and can evolve with it.
The developers can integrate the reproducer test for this issue
as part of the test-suite of the program. Reasons for patch
approval/selection can become parts of the commit message
when the auto-generated patch is committed to the repository.
Overall, we propose SpecRover as a programming agent that
not only automatically generates code improvements but also
produces evidence that enriches the software system lifecycle.

IV. EXPERIMENTAL SETUP

We address the following research questions:

RQ1: What is the efficacy of SpecRover in resolving issues?
RQ2: What level of confidence can developers get from the
patch and specifications produced by SpecRover?
RQ3: What is the quality of the specification produced by
SpecRover as evidence?

a) Benchmark: We evaluate the efficacy of SpecRover
on SWE-bench [3], a widely-used benchmark for autonomous
program improvement consisting of 2294 real-world GitHub
issues. For each issue, the only input for SpecRover is the issue
statement and the buggy codebase. Note that the regression test
suite used by SpecRover is part of the buggy program; we do
not access any code or test that is added by the developer in
the fixed version of program.

b) Baselines and Evaluation Metrics: For RQ1, we com-
pare with the state-of-the-art systems that target the repository-
level issue solving task. In our comparison, we include all the
open-source software engineering agents which have reported
results on SWE-bench. The baseline tools include:

• AutoCodeRover [5]. AutoCodeRover employs a set of pro-
gram structure-aware APIs to gather relevant code con-
text. It optionally integrates debugging techniques such as
Spectrum-based Fault Localization to sharpen the context.

• SWE-agent [9]. SWE-agent designs an agent-computer in-
terface, which defines the possible actions taken by an agent
to edit code, navigate the codebase, and execute tests.

• AppMap Navie [14]. Navie uses a retrieval-augmented gen-
eration (RAG) based approach to construct the code context,
and performs an explicit planning step before generating
code changes [15].

• OpenDevin [16]. OpenDevin’s CodeActAgent tackles the
tasks by having a general action space, where the agent
is allowed to execute arbitrary Python and bash commands
inside a sandbox environment.

• Aider [17]. Aider constructs a repository map which helps
the LLM to understand the repository context. It also uses
the regression test suite as a harness to retry the task.

• Moatless Tools [18]. Moatless Tools builds an agentic loop
that functions as a finite state machine and transitions
between states. It focuses on building a set of good tools
for the agent instead of relying on the agent for reasoning.

• Agentless [10]. Agentless is a concurrently pursued (cur-
rently unpublished) arXiv report which employs a fixed two-
phase approach of localization and repair, without allowing
the LLM to decide on actions or utilize tools.
We report pass@1 efficacy on SWE-bench for all tools. For

each issue, SWE-bench has a set of acceptance tests written
by the developers to evaluate the patch correctness. These
acceptance tests are not used by the tools when generating
patches. We follow the official SWE-bench evaluation criteria
- if the single patch generated by a tool passes the SWE-
bench acceptance tests for the issue, the issue is considered as
resolved.

c) Implementation and Parameters: We implemented
SpecRover on top of the AutoCodeRover codebase and reuse
its context retrieval APIs. We implemented new features
unique to SpecRover such as function summary extraction as
part of the context retrieval process. Other unique features
such as patch reviewing and selection are implemented as new
LLM agents. SpecRover supports multiple LLMs as backend.
In our experiments, we used the Claude 3.5 Sonnet as the main
foundation model, and only switch to OpenAI GPT-4o for a
task if that task encounters an API error when invoking the
Claude remote APIs. We set maximum retries on regression
test suite failures to be 3.

d) Randomness of LLMs: LLMs are inherently random
in its output generation, which may threaten the validity of
LLM-based coding agents including SpecRover. We address
this by setting the model temperature to 0, so that the model
output is more deterministic.

e) Manual Inspection of Results: For a better understand-
ing of the experimental results, we perform manual inspection
to obtain certain data, e.g., patch overfitting rate. All manual
inspections were independently conducted by two authors
and subsequently cross-checked. Discrepancies were resolved
through consultation with a third colleague from our group.

V. EVALUATION

A. RQ1: Overall Efficacy of Task Resolving

We first evaluate the overall efficacy of SpecRover in
resolving repository-level tasks. We report the efficacy of
SpecRover on both SWE-bench (consisting of 2294 real-world
GitHub issues), and SWE-bench Lite (which is a subset of
SWE-bench consisting of 300 issues). For the baseline tools,
we compare with their corresponding reported efficacy. If a
tool supports different configurations (e.g. different LLMs as
the backend), we compare with the configuration with the
highest efficacy.

Result: Table I shows the efficacy of issue resolving in
both SWE-bench and SWE-bench Lite. Overall, SpecRover
achieves the highest efficacy among all the open-source tools
in both SWE-bench and SWE-bench Lite. In SWE-bench
Lite, compared to the previously top-performing group of
tools which resolved approximately 26% to 27% of the is-
sues, SpecRover improved the efficacy to 31%. This efficacy
improvement is also evident in the full SWE-bench, where
SpecRover improved the efficacy from 14.60% to 19.31%.

6

TABLE I: Comparison of efficacy/efficiency/cost on SWE-bench and SWE-bench Lite.

Tool LLM Resolved% Avg. Time (s) Avg. Cost ($)

Efficacy on SWE-bench (size=2294)

AutoCodeRover GPT-4 12.42% (285) 248 0.45
SWE-Agent GPT-4 12.47% (286) - 1.59
AppMap Navie GPT4o 14.60% (335) - -
SpecRover Sonnet-3.5+GPT-4o 19.31% (443) 362 0.72

Efficacy on SWE-bench Lite (size=300)

SWE-Agent GPT-4 18.00% (54) - 1.67
AutoCodeRover GPT-4 19.00% (57) 195 0.43
AppMap Navie GPT-4o 21.67% (65) - -
OpenDevin Sonnet-3.5 26.00% (78) - 1.10
Aider GPT-4o+Opus-3 26.33% (79) - -
Moatless Tools Sonnet-3.5 26.67% (80) 71 0.17
Agentless GPT-4o 27.33% (82) - 0.34
SpecRover Sonnet-3.5+GPT-4o 31.00% (93) 309 0.65

‘-’ indicates data is not publicly available.

7 8 1

8
3

1

3

6

5

5

1

3
2 0

3
12

2
5 3

3

2 3 6

2

4

5

3

2

10

7

24

SpecRover
Agentless
Moatless
OpenDevin
Aider

Fig. 5: Number of uniquely resolved issues by the top per-
forming open-source tools on SWE-bench Lite.

Figure 5 illustrates the number of uniquely resolved issues by
SpecRover and other tools in SWE-bench Lite. For clarity, this
figure includes only the top five performing tools from Table I.
SpecRover uniquely resolved 12 issues, the highest number
of uniquely resolved issues among all the tools. Among the
12 uniquely resolved issues, SpecRover resolved six of them
by generating only one patch, demonstrating that the inferred
function summary can effectively guide the LLM to generate
correct patches. For the other six issues, SpecRover deemed
the first generated patch as incorrect from the reviewer agent
and the regression test suite. In this case, the patches are
iteratively refined based on the reviewer feedback and the test
results, and eventually the correct patch is selected at the end
of the workflow.

Data Memorization: An issue that can bias the evaluation
of LLM agent-generated patches is data memorization [19].
Data memorization occurs when an LLM deals with a program
that exists in its training set. To evaluate the risk of data leak-
age, we specifically count the patches generated by SpecRover
that are syntactically identical to the ground-truth patches.
Our counting shows that in SWE-Bench Lite, SpecRover
generated the ground-truth patch only for 9 issues, accounting
for 10% of the 93 resolved issues. The result shows that data

memorization occurs very infrequently for SpecRover.

Time and Cost: We also report the average time taken and
average costs for each issue in Table I. For each tool, we in-
clude the time and cost statistics in Table I if these information
was publicly reported or can be calculated from their publicly
available execution traces. On average, SpecRover costs $0.65
USD to generate patches for each issue in SWE-bench Lite,
achieving the highest efficacy with a relatively low cost. We
further investigate the 93/300 issues resolved by SpecRover
in SWE-bench lite. For the resolved issues, SpecRover only
costs $0.36 USD per issue to generate the correct patch,
suggesting that the resolved issues requires less retries and
less API calls to the LLM in general. Time-wise, SpecRover
spends an average of 309 seconds (i.e. 5.15 minutes) on each
issue, which includes the time for executing the reproducer
and the regressions tests in the project. According to a recent
study, most developers accept automated program repair tools
which takes less than 30 minutes [20]. SpecRover requires
approximately 5 minutes, which we deem acceptable.

Patch Correctness: A patch that passes a given test
suite is not necessarily correct, because the test suite is an
incomplete specification. This problem is known as patch
overfitting [21] in program repair. For a more accurate eval-
uation of the generated patches, we manually compared the
SpecRover-generated patch with the developer patch for each
resolved issue. Our manual investigation confirmed that 54.8%
(51/93) of the patches that pass the test suites are semantically
equivalent to the ground-truth patches. We also observed that
34 out of the 42 (=93-51) overfitting patches (i.e., the patches
that pass the test suite but are not semantically equivalent to
ground truth) modify the same methods as the ground-truth
patch, and only the specific modification is semantically dif-
ferent from the ground truth. This implies that even overfitting
patches produced by SpecRover are useful in indicating a fix
location. Adding up the semantically equivalent patches and
the overfitting patches that have the correct fix location, a total
of over 90% of the test-passing patches prove useful for issue

7

resolution.
Reasons for Failure: We examined the 207 tasks that are

not resolved by SpecRover in SWE-Bench Lite.These failure
cases break down into three cases:

1) Ambiguous issue description (as labeled by SWE-bench
Verified [22]): 107 (51.7%)

2) Incorrect fix location: 61 (29.5%)
3) Incorrect code modification: 39 (18.8%)
Case 1 is “hard or impossible to solve” [22] without further

information. Case 2 is more frequent than Case 3, implying
that SpecRover can potentially have significant improvement
by leveraging more fix localization techniques. For Case 3,
in most such cases (26/39), we observed that the gist of the
patch generated by SpecRover is actually correct, but some
code detail is wrong. To reduce this kind of failures, more
test generation techniques can be leveraged within our agent.

B. RQ2: Utility of autonomous SE, confidence in results

Although the efficacy in resolving issues is an important
aspect of autonomous program improvement, it is not the sole
purpose of such a technique. Rather, the efficacy is a means
to an end – to reduce human effort in software maintenance.
To this end, a program improvement technique must not only
have high efficacy, but also minimize the effort required of
an end user to use the technique. The effort is related to two
metrics: 1) signal-to-noise ratio, i.e., the ratio of correct to
incorrect patches presented to a user; and 2) the difficulty of
examining each auto-generated patch that is suggested.

We have designed SpecRover to reduce both of these efforts.
First, to reduce the number of incorrect patches that a user may
examine, we use the reviewer agent to decide the correctness
of the generated patch and the reproducer test. The user
can choose to examine the generated patch only when both
the patch and the reproducer test are deemed correct by the
reviewer agent. The accuracy of the reviewer decisions are
measured in RQ2. Second, to make it easy for a user to
examine each patch, SpecRover provides a variety of evidence
to help understand the patch, as discussed in Section III-E. The
quality of the evidence will be discussed in RQ3.

There can be four different scenarios when the reviewer
decision is viewed in relation to the actual correctness of the
patch. For convenience, we say a patch is accepted when the
reviewer agent decides that both the generated patch and the
reproducer test are correct. With this, we discuss the following
four scenarios:

• TP (true positive): Patch is accepted and correct;
• TN (true negative): Patch is not accepted and incorrect;
• FP (false positive): Patch is accepted but incorrect;
• FN (false negative): Patch is not accepted but correct.
Table II lists the frequency that each scenario occurred

in our experiment. The table counts in 119 tasks in SWE-
bench Lite for which a reproducer test was generated. In the
table, we also calculate the accuracy, precision, and recall of
the reviewer decisions. Out of the 119 tasks, there are 26
TP’s and 51 TN’s, i.e., as many as 64.7% (accuracy) of the

TABLE II: Reviewer decisions on SWE-Bench lite.

Category # Tasks

TP 26
TN 51
FP 26
FN 16

Total 119

Accuracy = (TP+TN) / Total 64.7%
Precision = TP / (TP+FP) 50.0%
Recall = TP / (TP+FN) 61.9%

0 10 20 30 40 50
Precision (%)

SWE-Agent

Aider

Moatless

Agentless

SpecRover

18

26.33

26.67

27.33

50.0

Comparison of Precision on SWE-Bench Lite

Fig. 6: Comparison of patch precision on SWE-bench Lite. If
SpecRover does not use regression tests for patch validation,
precision reduces only slightly to 48.3%.

reviewer decisions were consistent with the actual correctness
of the patch. The recall was also over 60%, meaning that the
majority of the generated correct patches were recognized by
the reviewer agent.

A metric of particular interest to program improvement
techniques is the precision. The precision is defined as
TP/(TP+FP), i.e., the proportion of correct patches in all the
patches offered by a technique. It is directly related to user
effort required to examine generated patches. For SpecRover,
the precision is 50.0%, as calculated in Table II. To put
the precision in perspective, we compare the precision of
SpecRover with that of other baseline tools in Figure 6. The
precision of the baseline tools is the same as their pass@1
efficacy reported in Table I, since these tools indiscriminately
present every generated patch to a user. As can be seen in
Figure 6, the precision of SpecRover is higher than 1.8x that
of Agentless, which has the second highest precision. The high
precision of SpecRover indicates a much lower cognitive load
imposed on the user, compared to other techniques. Moving
forward, we suggest paying attention to agent precision.

C. RQ3: Quality of Specifications produced

In this section, we investigate the quality of evidence
generated by SpecRover. The high-quality evidence allows
a developer to easily integrate auto-generated patch into an
existing codebase.

1) Function Summaries: We manually investigated the
natural-language specifications generated by SpecRover for
SWE-bench Lite issues. To obtain some approximation of
“ground truth” for the generated specifications, we extracted

8

skipping: --runxfail breaks pytest.mark.skip location reporting
pytest versions: 5.4.x, current master
When @pytest.mark.skip / skipif marks are used to skip a test,
for example
import pytest
@pytest.mark.skip
def test_skip_location() -> None:
 assert 0

the expected skip location reported should point to the item itself,
and this is indeed what happens when running with pytest -rs :
SKIPPED [1] test_it.py:3: unconditional skip

However, adding pytest -rs --runxfail breaks this:
SKIPPED [1] src/_pytest/skipping.py:238: unconditional skip

The --runxfail is only about xfail and should not affect this at all.

Hint: the bug is in src/_pytest/skipping.py ,
the pytest_runtest_makereport hook.

(a) Issue statement.

def pytest_runtest_makereport(item: Item, ...):
 ...
 elif item.config.option.runxfail:
 pass # don't interfere
 elif call.excinfo and isinstance(call.excinfo.value, ...):
 ... # (3 lines)
 elif not rep.skipped and xfailed:
 ... # (14 lines)
 elif ...:
 # calculate the line number

(b) Buggy code snippet.

--- a/src/_pytest/skipping.py
+++ b/src/_pytest/skipping.py
@@ -270,33 +270,34 @@ def pytest_runtest_makereport(item: Item, ...):
def pytest_runtest_makereport(item: Item, ...):
 ...
- elif item.config.option.runxfail:
- ... # (22 lines)
+ elif not item.config.option.runxfail:
+ if call.excinfo and isinstance(call.excinfo.value, ...):
+ ... # (20 lines)
+ if ...: # was elif
 # calculate the line number
+ # ... # (4 lines)

(c) Correct patch generated by SpecRover.

The patch correctly addresses the issue by modifying the logic in the
pytest_runtest_makereport function. It ensures that the skip location
is reported correctly regardless of whether the --runxfail option is
used. The patch moves the handling of skip location correction outside
the conditional block for --runxfail, which fixes the reported issue.

(d) Reviewer feedback.

Fig. 7: pytest-7432 description and SpecRover artifacts.

the titles of Pull Requests that developers wrote when they
fixed each issue. The PR title usually summarizes the fixes
made in the PR in one sentence. In this investigation, we
include only the issues for which SpecRover generated a patch
at the same methods as the developer’s patch. Moreover, we
exclude the issues whose developer-written PR title is too brief
(e.g. “Fixes issue #...”). For the included issues, we manually
compare the specification generated by SpecRover for the
patched methods, with the PR title written by the developer.
For 72/101 (71%) inspected issues, the specification generated
by SpecRover covers similar intent to the human-written PR
title, which shows that the generated specification serves as
a good summary of the intended behavior. The generated
specifications are generally an extended version of the PR title
and additionally describe how the code should be modified.

2) Reviewer Feedback: We cannot conduct a quantitative
examination on the quality of the reviewer feedbacks on the
generated patches, since there is no “ground truth”. Therefore,
we illustrate the quality of the feedbacks with two examples.

Issue: Wrong Derivative kind attribute
I'm playing around with the kind attribute.
The following is correct:
 A = MatrixSymbol ('A', 2, 2)
 i = Integral (A, x)
 i.kind # MatrixKind(NumberKind)

This one is wrong:
 d = Derivative (A, x)
 d.kind # UndefinedKind

(a) Issue statement.

Buggy Locations
Class Derivative in
file sympy/core/function.py

Intended behavior:
Add a kind property to the Derivative
class that returns the appropriate kind for
derivatives. This may involve checking the
kind of the expression being differentiated
and the differentiation variables.

(b) Location and summary.

try:
 A = MatrixSymbol('A', 2, 3)
 i = Integral(A, x)
 assert i.kind == 'MatrixKind(NumberKind)',
 f"Expected 'MatrixKind(NumberKind)', got {i.kind}"
 d = Derivative(A, x)
 assert d.kind == 'MatrixKind(NumberKind)',
 f"Expected 'MatrixKind(NumberKind)', got {d.kind}"
except AssertionError as e:
 # issue reproduced
 print_stacktrace(e)
 raise

(c) Generated reproducer test.

--- a/sympy/core/function.py
+++ b/sympy/core/function.py
 ...
+ @property
+ def kind(self):
+ return self.expr.kind
+
 def __new__(cls, expr, *variables, **kwargs):
 ...

(d) Correct patch generated by SpecRover.

Patch is correct.
Reason: The patch correctly adds a kind property to the Derivative
class that returns the kind of the expression being differentiated.

Test is wrong.
Reason: The test incorrectly compares the kind attribute to a
string MatrixKind(NumberKind) . The kind attribute is an object, not a
string, and should be compared directly to the expected kind object.

(e) Reviewer feedback.

Fig. 8: SymPy-21614 description and SpecRover artifacts.

a) Reviewer Feedback as Summary: In the first example,
we show that the reviewer feedback can serve as a concise
summary of a generated patch. The summary describes the
behavior of the patch at a high level. Therefore, a developer
can understand the generated patch faster by reading the
summary before examining the details of the patch. Besides,
after the developer accepts the patch and decides to merge it
into existing code, the summary constitutes a good commit
message, so that the developer does not need to write one.
From a developer’s perspective, the whole process is very
much like reviewing a pull request, which is already part of a
developer’s day-to-day workflow. The specific issue involved
in this example is pytest-74322. The issue statement is shown
in Figure 7a, which reports that pytest (a python testing
framework) would miscalculate a line number in its output
when an irrelevant option (runxfail) is enabled. The bug
is caused by the code shown in Figure 7b. As can be seen,
the calculation of the line number is wrongly placed in a
branch that is mutaully exclusive with the runxfail branch.
Therefore, the calculation is wrongly skipped when the option
is enabled.

2https://github.com/pytest-dev/pytest/issues/7392

9

https://github.com/pytest-dev/pytest/issues/7392

To resolve the issue, SpecRover was able to locate the
relevant code and produce the correct patch. An abridged
version of the patch is shown in Figure 7c. It correctly
addresses the issue by moving the line number calculation to
a branch unaffected by the runxfail option. However, the
patch might not be immediately understandable to a developer,
because it changes as many as 51 lines in the original program
(though most of the changes just involve the indentation level).
Fortunately, the understanding of the patch can be eased by
the reviewer feedback. The reviewer agent was able to identify
the patch as correct and produced the feedback in Figure 7d. It
properly summarized that the patch just moved the calculation
to another branch. Using this summary, the developer would
easily understand the patch and accept it.

b) Tolerance of Incorrect Tests: Another advantage of
the reviewer is enhanced tolerance of incorrect automatically
generated tests. We illustrate this advantage with the example
of SymPy-216143, where SpecRover rejects an incorrectly
written test while approving a correct patch. The issue state-
ment and the buggy location identified by SpecRover are
shown in Figure 8a and 8b. The issue mentioned an unexpected
behavior of the kind attribute. After its context retrieval
stage, SpecRover correctly identifies that the buggy location
is in the Derivative class, and that its intended behavior
is to have an additional kind property. Figure 8c and 8d
show the automatically generated reproducer test and patch
for this issue. In this case, the reproducer test is incorrect -
the assertions compare an object with a string, which always
evaluate to False. If this reproducer test is used solely
to determine the correctness of the generated patches, any
patch, even a correct one, will be rejected. However, since
the reviewer agent in SpecRover simultaneously examines
both the reproducer test and the patch without assuming
either is correct, it is capable of rejecting the reproducer
test while approving the patch. Figure 8e shows the reviewer
agent’s decision and comments towards the test and patch. The
reviewer identifies that the assertions in the reproducer are
written incorrectly, thereby rejecting the reproducer. On the
other hand, the reviewer correctly approves the patch despite
the presence of an unreliable test. The correct patch, along
with the reasons for rejecting the reproducer, can be sent to the
developer. The developer can then integrate the patch into the
codebase. Additionally, the developer can revise the “almost
correct” reproducer test based on the feedback provided by
the reviewer agent.

VI. CASE STUDY: SECURITY VULNERABILITY REPAIR

Although SpecRover is initially designed to resolve GitHub
issues in Python repositories, it can be easily adapted for pro-
gram improvements in other application domains and in other
programming languages. We demonstrate how SpecRover fixes
security vulnerabilities in C programs, through an example
challenge problem from the DARPA AI Cyber Challenge

3https://github.com/sympy/sympy/issues/21604

// file: net/tipc/crypto.c
static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, ...) {
...
 /* Copy key from msg data */
 skey->keylen = keylen;
 memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME);
 memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32),

 skey->keylen);
...

(a) Buggy code snippet.

BUG: KASAN: slab-out-of-bounds in tipc_crypto_msg_rcv+0x398/0x6e0
Write of size 1220 at addr ff11000004579024
Call Trace:
 ...
[8.941611] kasan_report+0xad/0x130
[8.941796] ? tipc_crypto_msg_rcv+0x398/0x6e0
[8.942020] kasan_check_range+0x35/0x1c0
[8.942223] memcpy+0x39/0x60
[8.942379] tipc_crypto_msg_rcv+0x398/0x6e0
 ...

(b) Vulnerability report generated after executing the PoC.

File: net/tipc/crypto.c , Method: tipc_crypto_key_rcv

Intended behavior: The tipc_crypto_key_rcv function should:
1. Validate the Message Data Size and Key Length:
Before performing any memory operations, the function should
ensure that the message data size and key length are within
valid bounds to prevent out-of-bounds memory access.
2. Safe Memory Operations:
The memcpy operations should be performed only if the source
and destination buffers are within valid memory bounds.
...

(c) Buggy location and function summary by SpecRover.

--- a/net/tipc/crypto.c
+++ b/net/tipc/crypto.c
@@ -2285,12 +2285,24 @@ static bool tipc_crypto_key_rcv ...
 u32 size = msg_data_sz(hdr);
 u8 *data = msg_data(hdr);
 unsigned int keylen;
+
+ /* Validate message data size */
+ if (size < TIPC_AEAD_ALG_NAME + sizeof(__be32)) {
+ pr_err("%s: invalid message data size\n", rx->name);
+ return false;
+ }
 ...
+ /* Validate key length */
+ if (keylen > size - (TIPC_AEAD_ALG_NAME + sizeof(__be32))) {
+ pr_err("%s: invalid key length\n", rx->name);
+ return false;
+ }
+
 spin_lock(&rx->lock);
 if (unlikely(rx->skey || (key_gen == rx->key_gen && ...))) {
 pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name,

(d) Correct patch generated by SpecRover.

Patch is correct.
Reason: The patch addresses the root cause of the slab-out-of-bounds
issue by adding validation checks for the message data size and the key
length before accessing the data. This ensures that the memory access
is within the allocated bounds, preventing the out-of-bounds
write that was causing the crash. The validation checks are appropriately
placed and cover the necessary conditions to prevent the vulnerability
without introducing new issues or making significant functional changes.

(e) Reviewer feedback.

Fig. 9: Linux Kernel Exemplar Challenge in DARPA AIxCC.

(AIxCC) in 2024 [23]. The AIxCC is a two-year competi-
tion organized by DARPA and ARPA-H to encourage the
development of novel cyber-reasoning systems to safeguard
critical software. The AIxCC has publicly released exemplar
challenges, where each challenge consists of a software project
with a vulnerability. The task is to have an autonomous system
to find and fix the vulnerability. Each exemplar challenge also
contains a Proof-of-Concept (PoC) input file that triggers the
vulnerability, so we use this PoC to show how SpecRover
can be used to fix the vulnerability. Figure 9 shows one
exemplar challenge, which is a buffer overflow4. It occurs in
the Linux networking module for the Transparent Inter-Process

4CVE-2021-43267 re-introduced to Linux kernel 6.1.54

10

https://github.com/sympy/sympy/issues/21604

Communication (TIPC) protocol, and allows remote attackers
to cause denial-of-service or disclosure of sensitive informa-
tion. Specifically, when the user-supplied sizes in the message
body are invalid for the received messages, a buffer overflow
happens with the memcpy call, as shown in Figure 9a. This
vulnerability has been triggered by a PoC, which results in a
vulnerability report as shown in Figure 9b.

SpecRover fixes this vulnerability by first analyzing the
vulnerability report, similar to how it resolves GitHub issues. It
conducts context retrieval, and decides on the buggy locations
and intended behaviors as shown in Figure 9c. Even though the
vulnerability report only contains the call trace and minimal
description of the bug (e.g., “slab-out-of-bounds”), SpecRover
can infer the intended local behavior at the function level.
Based on the intended behavior, SpecRover generated the
patch in Figure 9d, which correctly fixes the vulnerability
inserting additional checks before the dangerous memory
operation. The reviewer agent approved the patch with the
comments shown in Figure 9e, with which the developers
can gain an initial understanding of the patch before closely
examining the changed code.

VII. RELATED WORK

Automated program repair (APR) [8], [24] is a well studied
research area in software engineering. Given a buggy program
P , and a test-suite T , automated program repair attempts to
(minimally) modify P to a program P ′ which passes the given
test-suite T . APR techniques involve metaheuristic search [25],
semantic analysis [6], machine learning [26], or a combination
of different techniques. APR can also be used to rectify
automatically generated code from LLMs, see e.g. [1].

The recent interest in prompt engineering as well as agent
based solutions has somewhat evolved the research in program
repair. LLM agents try to combine the power of LLM with pro-
gram analysis and test execution reasoning. Thus LLM agents
can combine LLMs with test generation, static and dynamic
analysis as well as specification inference. In the recent past,
lot of LLM based approaches have been proposed for solving
software “issues” described in natural language, including [4],
[5], [9], [10]. Among these our work is thematically closest
to the work of AutoCodeRover [5]. Like AutoCodeRover.
we take the position that program modifications like bug
fixing are best aided by inference of the developer intent.
AutoCodeRover infers the developer intent only from the
software project structure. In contrast, SpecRover is more
general and is capable of inferring specifications from different
sources including program structure, program behavior, tests
and so on. Furthermore, SpecRover focuses on giving an
explanation of the produced patches.

Previous works have studied function-level specification
inference by means of LLMs [27]–[29]. However, these works
either focus on generating specifications for simple one-
function or one-class programs [27], [28], or assume that a
target function is provided [29]. In contrast, SpecRover targets
large programs and does not assume the target functions to
generate specifications for are given.

Since both tests and patches generated in an autonomous
workflow can be unreliable, we additionally consider the
natural-language issue description when judging their correct-
ness. The judgement process is concretized as the reviewer
agent. Compared to the previous works that discover additional
specification based on user intent [30], we do not rely on
interactive user feedback. Instead, we utilize the high-level
natural-language description as additional feedback. Further-
more, compared to previous works that evaluate the generated
code with an LLM-based reviewer [31], our reviewer agent
is designed for the setup where both natural-language instruc-
tions and unreliable tests are present.

VIII. PERSPECTIVES

Owing to the growth of LLM-based automatic programming
(see [32] for a recent summary), there exists interest in
autonomous program improvement technologies. We propose
SpecRover with the perspective of autonomously producing
patches which are suggested with confidence (thus developers
can confidently accept them) and come with explanations. The
technical innovations supporting SpecRover are the specifica-
tion inference to guide patching, and the rigorous vetting of
patches via our reviewer agent. Our work on SpecRover seeks
to put the matter of quality of patches produced by LLM agents
into the research community’s attention, whereas other works
are mostly focusing on the agent efficacy.

Moving forward, we envision that LLM agents will need
to improve the precision and recall. Specifically, LLM agents
will need to vet the produced patches. The vetting needs to
be accompanied by sophisticated test generation, so that there
is a rich test-suite to check the produced patches. Thus, we
need to take the viewpoint of a developer using an LLM agent,
who would be concerned about (a) efficacy, (b) cost, and, most
importantly (c) signal-to-noise ratio in the agent output.

DATA AVAILABILITY

We share full public access of the source code and ex-
perimental artifacts of SpecRover at https://zenodo.org/doi/10.
5281/zenodo.13161650.

We are continuously improving the efficacy and usability
of SpecRover (i.e., AutoCodeRover-v2). At the time of paper
acceptance (Nov 2024), AutoCodeRover-v2 has achieved an
efficacy of 37.3% on SWE-bench Lite and 46.2% on SWE-
bench Verified. We have also packaged AutoCodeRover-v2
as a GitHub bot offering one-click issue resolution [33]. The
latest source code, experimental results, and news updates of
AutoCodeRover-v2 can be found at our GitHub repository5

and website6.

ACKNOWLEDGMENTS

This work was partially supported by a Singapore Ministry
of Education (MoE) Tier 3 grant ”Automated Program Re-
pair”, MOE-MOET32021-0001.

5https://github.com/nus-apr/auto-code-rover
6https://www.autocoderover.net/

11

https://zenodo.org/doi/10.5281/zenodo.13161650
https://zenodo.org/doi/10.5281/zenodo.13161650
https://github.com/nus-apr/auto-code-rover
https://www.autocoderover.net/

REFERENCES

[1] Z. Fan, X. Gao, M. Mirchev, A. Roychoudhury, and S. H. Tan, “Auto-
mated repair of programs from large language models,” in International
Conference on Software Engineering (ICSE), 2023.

[2] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri, “Asleep
at the keyboard? assessing the security of github copilot’s code contri-
butions,” in IEEE Symposium on Security and Privacy (SP), 2022.

[3] C. E. Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and
K. R. Narasimhan, “SWE-bench: Can language models resolve real-
world github issues?” in The Twelfth International Conference
on Learning Representations, 2024. [Online]. Available: https:
//openreview.net/forum?id=VTF8yNQM66

[4] C. Labs, “Devin, ai software engineer,” April 2024. [Online]. Available:
https://www.cognition-labs.com/introducing-devin

[5] Y. Zhang, H. Ruan, Z. Fan, and A. Roychoudhury, “Autocoderover:
Autonomous program improvement,” in ACM International Symposium
on Software Testing and Analysis (ISSTA), 2024.

[6] H. D. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in International Conference on
Software Engineering (ICSE), 2013.

[7] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in International Con-
ference on Software Engineering (ICSE), 2016.

[8] C. Le Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Communications of the ACM, vol. 62, 2019.

[9] J. Yang, C. E. Jimenez, A. Wettig, K. Lieret, S. Yao, K. Narasimhan,
and O. Press, “Swe-agent: Agent-computer interfaces enable automated
software engineering,” 2024.

[10] C. S. Xia, Y. Deng, S. Dunn, and L. Zhang, “Agentless: De-
mystifying llm-based software engineering agents,” arXiv preprint
arXiv:2407.01489, 2024.

[11] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[12] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for
code generation,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[13] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan,
E. Jiang, C. Cai, M. Terry, Q. Le et al., “Program synthesis with large
language models,” arXiv preprint arXiv:2108.07732, 2021.

[14] AppMap, “Appmap navie,” July 2024. [Online]. Available: https:
//appmap.io/product/appmap-navie

[15] K. Gilpin, “How appmap navie solved the swe bench ai coding
challenge,” June 2024. [Online]. Available: https://dev.to/appmap/
how-appmap-navie-solved-the-swe-bench-ai-coding-challenge-20an

[16] X. Wang, B. Li, Y. Song, F. F. Xu, X. Tang, M. Zhuge, J. Pan, Y. Song,
B. Li, J. Singh et al., “Opendevin: An open platform for ai software
developers as generalist agents,” arXiv preprint arXiv:2407.16741, 2024.

[17] P. Gauthier, “Aider,” July 2024. [Online]. Available: https://github.com/
paul-gauthier/aider

[18] A. Örwall, “Moatless tool,” July 2024. [Online]. Available: https:
//github.com/aorwall/moatless-tools

[19] I. Magar and R. Schwartz, “Data contamination: From memorization
to exploitation,” in Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers),
ACL 2022, Dublin, Ireland, May 22-27, 2022, S. Muresan, P. Nakov,
and A. Villavicencio, Eds. Association for Computational Linguistics,
2022, pp. 157–165. [Online]. Available: https://doi.org/10.18653/v1/
2022.acl-short.18

[20] Y. Noller, R. Shariffdeen, X. Gao, and A. Roychoudhury, “Trust
enhancement issues in program repair,” in Proceedings of the 44th
International Conference on Software Engineering, 2022, pp. 2228–
2240.

[21] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure
worse than the disease? overfitting in automated program repair,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4,
2015, E. D. Nitto, M. Harman, and P. Heymans, Eds. ACM, 2015, pp.
532–543. [Online]. Available: https://doi.org/10.1145/2786805.2786825

[22] N. Chowdhury, J. Aung, C. J. Shern, O. Jaffe, D. Sherburn,
G. Starace, E. Mays, R. Dias, M. Aljubeh, M. Glaese, C. E.
Jimenez, J. Yang, K. Liu, and A. Madry, “Introducing swe-bench
verified,” Aug 2024, accessed: 2024-11-27. [Online]. Available:
https://openai.com/index/introducing-swe-bench-verified/

[23] DARPA, “Ai cyber challenge (aixcc),” July 2024. [Online]. Available:
https://aicyberchallenge.com/

[24] M. Monperrus, “Automatic software repair: A bibliography,” ACM
Computing Surveys, vol. 51, no. 1, 2018.

[25] C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A generic
method for automatic software repair,” IEEE Transactions on Software
Engineering, vol. 38, no. 1, 2011.

[26] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
symposium on principles of programming languages (POPL), 2024.

[27] F. Mu, L. Shi, S. Wang, Z. Yu, B. Zhang, C. Wang, S. Liu,
and Q. Wang, “Clarifygpt: A framework for enhancing llm-based
code generation via requirements clarification,” Proc. ACM Softw.
Eng., vol. 1, no. FSE, pp. 2332–2354, 2024. [Online]. Available:
https://doi.org/10.1145/3660810

[28] L. Ma, S. Liu, Y. Li, X. Xie, and L. Bu, “Specgen: Automated
generation of formal program specifications via large language models,”
2024. [Online]. Available: https://arxiv.org/abs/2401.08807

[29] M. Endres, S. Fakhoury, S. Chakraborty, and S. K. Lahiri, “Can
large language models transform natural language intent into formal
method postconditions?” Proc. ACM Softw. Eng., vol. 1, no. FSE, Jul.
2024. [Online]. Available: https://doi-org.libproxy1.nus.edu.sg/10.1145/
3660791

[30] S. Fakhoury, A. Naik, G. Sakkas, S. Chakraborty, and S. K. Lahiri, “Llm-
based test-driven interactive code generation: User study and empirical
evaluation,” IEEE Trans. Software Eng., vol. 50, no. 9, pp. 2254–2268,
2024. [Online]. Available: https://doi.org/10.1109/TSE.2024.3428972

[31] T. Zhang, T. Yu, T. Hashimoto, M. Lewis, W. Yih, D. Fried,
and S. Wang, “Coder reviewer reranking for code generation,” in
International Conference on Machine Learning, ICML 2023, 23-29 July
2023, Honolulu, Hawaii, USA, ser. Proceedings of Machine Learning
Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato,
and J. Scarlett, Eds., vol. 202. PMLR, 2023, pp. 41 832–41 846.
[Online]. Available: https://proceedings.mlr.press/v202/zhang23av.html

[32] M. Lyu, B. Ray, A. Roychoudhury, S. Tan, and P. Thongta-
nunam, “Automatic programming: Large language models and beyond,”
arXiv:2405.02213, 2024.

[33] AutoCodeRover, “Revamping issue resolution,” Sep 2024, accessed:
2024-11-27. [Online]. Available: https://medium.com/@autocoderover/
revamping-issue-resolution-f0d91ac6162c

12

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://www.cognition-labs.com/introducing-devin
https://appmap.io/product/appmap-navie
https://appmap.io/product/appmap-navie
https://dev.to/appmap/how-appmap-navie-solved-the-swe-bench-ai-coding-challenge-20an
https://dev.to/appmap/how-appmap-navie-solved-the-swe-bench-ai-coding-challenge-20an
https://github.com/paul-gauthier/aider
https://github.com/paul-gauthier/aider
https://github.com/aorwall/moatless-tools
https://github.com/aorwall/moatless-tools
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.1145/2786805.2786825
https://openai.com/index/introducing-swe-bench-verified/
https://aicyberchallenge.com/
https://doi.org/10.1145/3660810
https://arxiv.org/abs/2401.08807
https://doi-org.libproxy1.nus.edu.sg/10.1145/3660791
https://doi-org.libproxy1.nus.edu.sg/10.1145/3660791
https://doi.org/10.1109/TSE.2024.3428972
https://proceedings.mlr.press/v202/zhang23av.html
https://medium.com/@autocoderover/revamping-issue-resolution-f0d91ac6162c
https://medium.com/@autocoderover/revamping-issue-resolution-f0d91ac6162c

	Introduction
	Motivating Example
	Methodology
	Overview
	Function Summary: Specification from Program
	Reviewer Feedback: Reconciling Specifications
	Patch Selection
	Evidence

	Experimental Setup
	evaluation
	RQ1: Overall Efficacy of Task Resolving
	RQ2: Utility of autonomous SE, confidence in results
	RQ3: Quality of Specifications produced
	blackFunction Summaries
	blackReviewer Feedback

	Case Study: Security Vulnerability Repair
	Related Work
	Perspectives
	References

